ACCIDENT DETECTION USING VIDEO SURVEILLANCE
Abstract
Computer vision-based accident detection through video surveillance has become a beneficial task. There are many existing technologies to detect accidents in traffic but the speed and accuracy of the system does not meet the requirements. Thus the author formulates the idea of accident detection using video surveillance. The system consists of three phases: Vehicle detection, Vehicle tracking and Accident detection. The proposed framework capitalizes on Mask R-CNN for accurate object detection and uses an efficient centroid-based object tracking algorithm for surveillance footage. The accident detection phase includes Acceleration Anomaly, Trajectory Anomaly, and Change in Angle Anomaly. The probability of an accident is determined by speed and trajectory anomalies in a vehicle after an overlap with other vehicles. If the value is greater than the threshold value, then we can confirm that there is an accident. The proposed framework provides a robust method to achieve a high Detection Rate and a Low False Alarm Rate on general road-traffic CCTV Surveillance footage.
Keywords:
Accident Detection, Mask R-CNN, Vehicular Collision,, Centroid based Object TrackingPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Aleena Joseph, Diya Paramesh G, Elza Mary Thomas, Gayathri V, Anu V Kottath, A Review on Comparison of VGG-16 and DenseNet algorithms for analysing brain tumor in MRI image , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Adith Ajay, Automatic Fall Detection And Alert System For Home Safety , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Sandra Saji, Melbin Mathew, Angel Mariya S, Amrutha Mugesh, Jincy Lukose, MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- M Manoj, A S Athira, Rishna Ramesh, Sandhra Gopi, Firoz P U, Smart Attend Insights , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jefrin Siby Mathew, Joyal Joseph, Roshik George, Tinu Rose Thottungal , Honey Joseph, Multiple Disease Detection using Machine Learning , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Fabeela Ali Rawther, Akhil P Dominic, Alan James, Christy Chacko, Elena Maria Varghese, Early Detection of Attention Deficiency Using ML , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Sebastian Biju, Samuel Michael, Thomas Mathew Jose, Mathew Abraham, Minu Cherian, A Review of Machine Learning Approaches for Canine Skin Disease Detection Using Image Processing Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Dona S Plavelil, A Devanandha, Haritha H Kurupp, Jissin k Jose, DETECTION OF ALZHEIMER’S DISEASE AND ASSISTANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.