Weed detection using YOLOv3 and elimination using organic weedicides with Live feed on Web App
Abstract
The article discusses the pressing issues in agri- culture, particularly highlighting the significance of detecting and categorizing weeds. Weeds pose a threat by competing with crops for vital nutrients, traditionally addressed through manual detection and herbicide application. However, recent technological progress has focused on automating weed detection using methods such as YOLOV3, a CNN-based object detection technique. In addition, the article introduces a fresh approach that utilizes linear actuators and organic weedicides for weed control. It evaluates this system’s effectiveness in terms of preci- sion and dynamic intrarow weeding through various analyses and experimental trials, demonstrating high accuracy and efficiency in real field scenarios. The live video footage of weed detection and removal is also showcased on a web application, providing users with information on the number of weeds eliminated. This integration of technological and chemical solutions presents a promising strategy for managing weeds in agriculture.
Keywords:
weed detection, crop, CNN, YOLO, digital farming, deep learning, Dynamic intrarow weeding, linear actuatorsPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Athira Sankar, Sajishma S R, Alan Raj, Vaishnavi A K, Reshmi S Kaimal, Hydro Sense: Empowering Water Quality Monitoring Through IoT And ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jyothika Anil, Milan Joseph Mathew, Namitha S Mukkadan, Reshmi Raveendran, Rintu Jose, Driver Drowsiness Detection Using Smartphone Application , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Rema M K, Muhamed Ajmal K R, Deepak T G, Roshini M, Muhammed Bazir, INTERACTIVE TOY , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Aaron Samuel Mathew, Green Cloud Computing: A Literature Survey , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Manjima M A, Soumya Anand, Partial Replacement of bitumen by Plant Polymer Lignin in Bituminous Pavement , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Fabeela Ali Rawther, Raihana Rasaldeen, Stefi Marshal Fernandez, Irin Rose Jaison, Ria Mariam Mathews, A Survey on Automating Answer-Sheet Evaluation Using AI Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Nivedh Mohanan, Subhash P C, Subin K S, Subin V Ninan, Elisabeth Thomas, S N Kumar, A Qualitative Study on Segmentation of MR Images of Brain for Neuro Disorder Analysis , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anna Jose, Anit Devesiya, Albin Scaria Sabu, Anand Baby John, Prof.Maria Yesudas, AMIGO APPLICATION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Nihal Anil, Ms. Nighila Abhish, Jesila Joy , Noora Sajil , P R Vishnuraj, Augmented Neat Algorithm For Enhanced Cognitive Interaction (NEAT-X) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Krishnendu B, Sreelakshmi A, Sumayya Maheen, Zameel Hassan, Honey Joseph, Chatbot-Enabled Symptom Assessment: Revolutionizing Disease Diagnosis and Patient Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.