Weed detection using YOLOv3 and elimination using organic weedicides with Live feed on Web App
Abstract
The article discusses the pressing issues in agri- culture, particularly highlighting the significance of detecting and categorizing weeds. Weeds pose a threat by competing with crops for vital nutrients, traditionally addressed through manual detection and herbicide application. However, recent technological progress has focused on automating weed detection using methods such as YOLOV3, a CNN-based object detection technique. In addition, the article introduces a fresh approach that utilizes linear actuators and organic weedicides for weed control. It evaluates this system’s effectiveness in terms of preci- sion and dynamic intrarow weeding through various analyses and experimental trials, demonstrating high accuracy and efficiency in real field scenarios. The live video footage of weed detection and removal is also showcased on a web application, providing users with information on the number of weeds eliminated. This integration of technological and chemical solutions presents a promising strategy for managing weeds in agriculture.
Keywords:
weed detection, crop, CNN, YOLO, digital farming, deep learning, Dynamic intrarow weeding, linear actuatorsPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- R Karthika, Maria Toms, S R Aadrash, P U Prabath, InsightAI: Bridging Natural Language and Data Analytics , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Arya Raj S, R Gopika Krishnan, Drishya Das, Rohith R, Jocelyn Ann Joseph, Personality Profiling Using CV Analysis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Amina Manaf , Ance Maria Joseph , Angel Joy , Anjaly Anilkumar , K S Rekha, Driver Drowsiness Detection Using Python , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- V Amarjith, Anaswara Anil, Anju Viswam, KM Aravind, Multilingual Hardcoded Subtitle Extractor , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Layana S Pradeep, Milen Ninan Ittiyeipe, Shahina S, Soumya A S, Ojus Thomas Lee , Gayathri Mohan, A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr.Sinciya P.O , Ameena Ismail, Christin Abu, Don P Mathew, Gokul Krishnan G , Enhancing LSD Image Classification Techniques A Literature Review on Classification Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adona Shibu, Aarunya Retheep, Albin Joseph, Ali Jasim, Adona Shibu , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Muhammed Saalim O.S, Fathima Parvin M.A, Albiya Hameed, Hiba Fathima T.S, Amritha Soloman, AGRISEN Precise irrigation System and Smart health monitoring system , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Naveen Philip Abraham, Joppen George, Kevin Sajan, Jonathan Chandy, Jonathan Chandy, Bini M. Issac, Advancements in Assistive Technologies: Enhancing Independence and Accessibility for the Visually Impaired , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Prayag Suresh, Sneha Susan Alex, Rojan Varghese, Thomas Zacharias, Shiney Thomas, Survey of Strabismus Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.