A Review of Parkinson Disease Detection Techniques
Abstract
Parkinson’s disease (PD) is a progressive disorder that is caused by degeneration of nerve cells in the part of the brain called the substantia nigra, which controls movement. These nerve cells die or become impaired, losing the ability to produce an important chemical called dopamine. Studies have shown that symptoms of Parkinson’s develop in patients with an 80 percent or greater loss of dopamine-producing cells in the substantia nigra. Normally, dopamine operates in a delicate balance with other neurotransmitters to help coordinate the millions of nerve and muscle cells involved in movement. Without enough dopamine, this balance is disrupted, resulting in tremor (trembling in the hands, arms, legs and jaw); rigidity (stiffness of the limbs); slowness of movement; and impaired balance and coordination – the hallmark symptoms of Parkinson’s. The cause of Parkinson’s essentially remains unknown. However, theories involving oxidative damage, environmental toxins, genetic factors and accelerated aging have been discussed as potential causes for the disease. In 2005, researchers discovered a single mutation in a Parkinson’s disease gene (first identified in 1997), which is believed responsible for five percent of inherited cases.
Keywords:
Parkinson’s disease, Deep learning, Multi-modal data analysisPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Sandra Raju, Dr S Sruthy, A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Honey Thomas, Linna Benny, Saya Nezrin, Navya Neethi S, Niya Joseph, Smart Communication Software for the Hearing Impaired Using Artificial Intelligence , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Peter Cyriac, Binu B. R., An Integrated Approach to Campus Water Management: Leveraging Wireless Automation and Advanced Virtual Leakage Auditing , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr.Sinciya P.O, Aaron Varughese Bino, Anamin Fathima Anish, Aathira Krishna, Dona Maria Joseph, Unveiling Stress through Facial Expressions: A Literature Review on Detection Methods , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Rintu Jose, Study on Separable Reversible Data Hiding in Encrypted Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Aron Thomas , Abhinav B Kannanthanam , Elzabeth Bobus , Adhil Salim , Elizabeth Jullu , R Neenu, A Hybrid SQL Query Execution Model for JSON Data: Balancing Resource Efficiency and Analytical Performance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Prof.Pavitha P.P , S Abhinav, Abida P Vaidyan , B Parvathi, A Critical Evaluation on Line of Sight Based Data Transmission A Review , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aniruddha Das, Avisikta Modak, The Carbon footprint of Machine Learning Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Honey Joseph, Aaron M Vinod, Abin Mathew varghese, Aby Alex, Aleena Sain, Crop Yield Prediction Using ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Fr Jins Sebastian, Manu Tom Sebastian, Minnu Elsa Baby, Niya Mary Viby, Image Encryption Using Different Cryptographic Algorithms : A Survey Paper , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.