Comparative Analysis of Text Classification Models for Offensive Language Detection on Social Media Platforms
Abstract
The detection of offensive language in text has
become increasingly crucial in various social media platforms
to maintain a respectful and safe environment. In this
research we study and present a comparative analysis of
different text classification models for identifying offensive
and non-offensive language. Specifically, we investigate the
performance of Support Vector Classifier (SVC), Compliment
model, Gaussian model, and Multinomial model on a dataset
curated for this purpose. Each text classification model is
implemented and trained using the preprocessed dataset, and
their performance is evaluated using standard evaluation
metrics such as accuracy. The experimental results display the
effectiveness of each model in distinguishing offensive
language from non-offensive language. This research
contributes to the literature by providing empirical evidence
on the performance of various text classification models for
offensive language detection, thus aiding in the development
of more robust and accurate detection systems for online
platforms.
Keywords:
Textclassification, Offensive language, detection, Support Vector Classifier (SVC), Compliment model, Gaussianmode, Multinomial model, Social media platforms, Empirical analysis, Performance evaluation, Online content moderationPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Akshaya Babu, Amala Saju, Athulya C A, Mary Niya Sebastian, Nisy John Panicker, PlateGuard: Ensuring Security with YOLOv5 ANPR Technology , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr. Indu John, Gauri Santhosh, Jesna Susan Reji, Abdul Musawir, Glady Prince, Detection of Autism Spectrum Disorder in Toddlers using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Krishnendu B, Sreelakshmi A, Sumayya Maheen, Zameel Hassan, Honey Joseph, Chatbot-Enabled Symptom Assessment: Revolutionizing Disease Diagnosis and Patient Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jibin Jacob, Joel John, John Ashwin Delmon, Farhan Zuhair, Sinciya P.O, LOCAL WANDERER , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Shiney Thomas, Elsa George, Alphonsa Francis, Anna Job, Ann Maria James, Wildlife Detection And Recognition Using YOLO V8 , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Dr nitha C Vellayudan, Akshay K.P, Muhamed Adhil P.M, C.A Sivasankar , Crop Yield and Price Prediction , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr Anil A R, Amit Sankar Arun, Anandhu Anilkumar, Anandu S Sivan, Anoop Manoharan, DESIGNING OF A VOICE – BASED PROGRAMMING IDE FOR SOURCE CODE GENERATION , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Mekha Jose, Avin Joshy, Abishek R Paleri, Athul Mohan, Ali Jasim R M, A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.