Personality Profiling Using CV Analysis
Abstract
Human personality has been crucial to the growth
of both organizations and individuals. Standard questionnaires
and Curriculum Vitae (CV) analysis are two methods used to
assess human personality. So, a personality prediction system
that combines CV analysis and MBTI model questionnaires to
accurately predict an individual's personality traits based on
their uploaded CV is introduced. The system utilizes advanced
Natural Language Processing (NLP) techniques to extract
relevant information from the CV, including work experience,
education, skills, and achievements. By analysing the textual
content, the system identifies keywords and phrases associated
with different personality traits, laying the foundation for precise
predictions. MBTI model questionnaires are integrated to
further enhance the accuracy of personality prediction. User
responses to the questionnaires are carefully analysed and
mapped to the corresponding personality traits using established
psychological theories and models. A machine learning algorithm
is then employed to create a predictive model, learning from a
pre-labelled dataset of CVs and their associated personality
traits. The system's performance is evaluated using metrics such
as accuracy and precision, ensuring its effectiveness in capturing
the nuances of individual personality traits. The developed
system has significant applications in recruitment and team
composition, aiding employers in making informed hiring
decisions by evaluating candidates whose personalities align with
specific job requirements. Additionally, individuals can benefit
from gaining insights into their own personality traits, enabling
them to make informed career choices and pursue tailored
personal development opportunities. Overall, the proposed
system provides an efficient and accurate approach for
personality prediction based solely on CV analysis and
questionnaire responses.
Keywords:
Personality prediction, CV analysis, MBTI model, NLP, Machine Learning, Recruitment, Team CompositionPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Anu Rose Joy, An overview of Fake News DetectionusingBidirectional Long Short-TermMemory(BiLSTM)Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amrutha Priya C B, Nitha C Velayudhan, Arjun K S, Aleena Francis, Divya P S, AI Enabled Robot for Data Collection in Unreachable and Extreme Environment , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Kevin Roy, Lino Shaji, Riya G Johnson, Tince Tomy, Jane George, INTELLIGENT BUDDY , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Leo Jose, Navin Shibu George, Raju, Safa Haroon, Bini M Issac, Wearable Technology for Driver Monitoring and Health Management: A Comprehensive Survey , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Fabeela Ali Rawther, Raihana Rasaldeen, Stefi Marshal Fernandez, Irin Rose Jaison, Ria Mariam Mathews, A Survey on Automating Answer-Sheet Evaluation Using AI Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Joyal Joby Joseph, Michael Abraham Philips, Noel J Abraham, Steffi Maria Saji, Shiney Thomas, A Review of Parkinson Disease Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Sebin Thomas, John VG, Josin Chacko, Mariyam Shajahan, Sharon Sunny, PPT GENERATION FROM REPORT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- ANU ROSE JOY, Christeena Antony, Dona Mariyam John, Anuja Sara Mathew, Christeen Mareia Paul, UnLocking Emotion Recognition in ASD Children: Analyzing Facial Expressions , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Honey Thomas, Linna Benny, Saya Nezrin, Navya Neethi S, Niya Joseph, Smart Communication Software for the Hearing Impaired Using Artificial Intelligence , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.