Crop Yield Prediction Using ML
Abstract
India’s agriculture sector is pivotal to the nation’s
economy and sustains livelihoods for millions. With diverse agroclimatic zones, India boasts a rich agricultural heritage encompassing crops like rice, wheat, sugarcane, and cotton.For farmers,
decision-makers, and other stakeholders to allocate resources and
ensure food security, accurate crop yield prediction is essential.
This study looks into how machine learning algorithms might be
used to increase the precision of crop yield forecasts in India.The
study looks at how machine learning models can take into account
a number of variables that impact crop yields, such as crop
type, season, state, area, fertilizer, pesticide, and rainfall. The
effectiveness of various algorithms, such as LinearRegression,
Lasso, Ridge and DecisionTreeRegressor, is evaluated.Out of
the three Machine Learning methods, the DecisionTreeRegressor
algorithm demonstrated the best performance, as seen by its
lowest MAE (mean absolute error) value and highest R² value.
These findings imply that machine learning algorithms have
the potential to greatly increase agricultural yield projections’
accuracy in Morocco, which might enhance food security and
maximize farmers’ use of available resources.
Keywords:
crop yield, machine learning, agriculturePublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- ANU ROSE JOY, Christeena Antony, Dona Mariyam John, Anuja Sara Mathew, Christeen Mareia Paul, UnLocking Emotion Recognition in ASD Children: Analyzing Facial Expressions , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Athira Sankar, Sajishma S R, Alan Raj, Vaishnavi A K, Reshmi S Kaimal, Hydro Sense: Empowering Water Quality Monitoring Through IoT And ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anu Rose Joy, An overview of Fake News DetectionusingBidirectional Long Short-TermMemory(BiLSTM)Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- NS AkhilRaj, Snehil Jacob Raju, John Basil Varghese, Sreeraj K S, Yadukrishnan P, Directio-AR Assisted ShopMate , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- V Naveen, S Rekha, A Concise Review On E-Commerce Website For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Juby Mathew, Maria Jojo, Neha Ann Samson, Noell Biju Michael, Ron T Alumkal, PulseSync: IoT-Enabled Monitoring and Predictive Analytics for Healthcare , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- K.M Gishma, K.B Annmaria , V.N Ramna Parvan , Anagha Suresh, Athira Shaji, LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Anna Thomas, Esther Thankam Mathew, Anitta Emmanuel, Noel Thomas, Auxilia: Assistive Learning Tool for Children with Down Syndrome , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.