Crop Yield Prediction Using ML
Abstract
India’s agriculture sector is pivotal to the nation’s
economy and sustains livelihoods for millions. With diverse agroclimatic zones, India boasts a rich agricultural heritage encompassing crops like rice, wheat, sugarcane, and cotton.For farmers,
decision-makers, and other stakeholders to allocate resources and
ensure food security, accurate crop yield prediction is essential.
This study looks into how machine learning algorithms might be
used to increase the precision of crop yield forecasts in India.The
study looks at how machine learning models can take into account
a number of variables that impact crop yields, such as crop
type, season, state, area, fertilizer, pesticide, and rainfall. The
effectiveness of various algorithms, such as LinearRegression,
Lasso, Ridge and DecisionTreeRegressor, is evaluated.Out of
the three Machine Learning methods, the DecisionTreeRegressor
algorithm demonstrated the best performance, as seen by its
lowest MAE (mean absolute error) value and highest R² value.
These findings imply that machine learning algorithms have
the potential to greatly increase agricultural yield projections’
accuracy in Morocco, which might enhance food security and
maximize farmers’ use of available resources.
Keywords:
crop yield, machine learning, agriculturePublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- K A Arun, Christine Maria Jose , Ann Mathew, Elizabeth Jullu, Lida K Kuriakose, Location-Based Alarm Systems and Service Recommendations for Enhanced Travel Management , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr Anil A R, Amit Sankar Arun, Anandhu Anilkumar, Anandu S Sivan, Anoop Manoharan, DESIGNING OF A VOICE – BASED PROGRAMMING IDE FOR SOURCE CODE GENERATION , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Sandra Raju, Dr S Sruthy, A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Rohan Malka, Jerin Joseph Abraham, Jobcy Johnson, Sobin Saju, Febin Sam Philip, Aju Mathew George, S.N.Kumar , Green Waste Utilization for Sustainable Energy Engineering Application: A Path towards Green Circular Economy , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Prayag Suresh, Sneha Susan Alex, Rojan Varghese, Thomas Zacharias, Shiney Thomas, Survey of Strabismus Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nihal Anil, Ms. Nighila Abhish, Jesila Joy , Noora Sajil , P R Vishnuraj, Augmented Neat Algorithm For Enhanced Cognitive Interaction (NEAT-X) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Parvathy S Kurup, Pranav P Nair, Sai Kishor, Aryan S Nair, Pranav P, Face Image Synthesis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Joyal Joby Joseph, Michael Abraham Philips, Noel J Abraham, Steffi Maria Saji, Shiney Thomas, A Review of Parkinson Disease Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.