Deep Learning for Cyber Threat Detection
Abstract
The study explores how deep learning, specifically
convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), can be applied to
improve cyber threat detection. Deep learning, a
subset of machine learning with the remarkable
ability to learn complex patterns from data, makes it
a powerful tool for this critical task. By enabling the
analysis of diverse data types, including images,
network traffic logs, and system logs, deep learning
architectures play a crucial role in cyber threat
detection. Feature representation is a critical aspect
of deep learning-based cybersecurity, involving
methods for pre-processing data to extract
meaningful features suitable for model input. For
analysing sequential data, such as network traffic
patterns and system event logs, recurrent neural
networks (RNNs) are a strong choice. Image-based
threat analysis benefits significantly from
convolutional neural networks (CNNs) due to their
ability to process visual data effectively.
The acquisition of high-quality training data is
essential for training effective deep learning models.
Researchers employ various strategies, including
synthetic data generation, data augmentation, and
collaboration with cybersecurity threat intelligence
providers, to acquire diverse and representative
datasets. The applicability of deep learning models
for cyber threat detection is demonstrably effective
across diverse scenarios and attack vectors. Realworld use cases in malware detection, intrusion
detection, phishing detection, and behavioral
analysis showcase their capabilities in various
security domains. Performance evaluation using
metrics like detection accuracy, false positive rates,
detection speed, and scalability is essential for this
assessment. Adversarial robustness is a critical
consideration in deep learning-based cybersecurity,
addressing the challenges posed by adversarial
attacks aimed at evading or poisoning the models.
The research methodology involves a combination
of literature review, experimentation, and empirical
analysis. Researchers leverage publicly available
datasets, simulation environments, and open-source
deep learning frameworks to conduct experiments
and validate proposed approaches. The potential
contributions of this research include identifying
effective deep learning architectures and techniques for cyber threat detection, providing insights into
practical considerations and limitations, and offering
recommendations for deploying deep learningbased security solutions. In conclusion, deep
learning holds immense promise for enhancing
cyber threat detection capabilities, enabling
automated, scalable, and adaptive security solutions.
The ever-evolving threat landscape in cybersecurity
constantly pushes researchers to advance the stateof-the-art in deep learning. Their goal is to develop
more robust and proactive defense mechanisms to
effectively counter these emerging threats.
Keywords:
Deep Learning, Convolutional Neural Networks, Recurrent Neural Networks, Threat Detection, Adversarial Robustness, Cybersecurity.Published
Issue
Section
License
Copyright (c) 2025 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- R Karthika, Maria Toms, S R Aadrash, P U Prabath, InsightAI: Bridging Natural Language and Data Analytics , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Melvin Tom Varghese, Joseph V S, Kevin Chacko, Johns Benny, Tintu Alphonsa Thomas, Crop Recommendation System using Machine Learning and IoT , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Amina Manaf , Ance Maria Joseph , Angel Joy , Anjaly Anilkumar , K S Rekha, Driver Drowsiness Detection Using Python , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aleena Joseph, Diya Paramesh G, Elza Mary Thomas, Gayathri V, Anu V Kottath, A Review on Comparison of VGG-16 and DenseNet algorithms for analysing brain tumor in MRI image , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Arya Raj S, R Gopika Krishnan, Drishya Das, Rohith R, Jocelyn Ann Joseph, Personality Profiling Using CV Analysis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Muhammed Saalim O.S, Fathima Parvin M.A, Albiya Hameed, Hiba Fathima T.S, Amritha Soloman, AGRISEN Precise irrigation System and Smart health monitoring system , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Akshaya Babu, Amala Saju, Athulya C A, Mary Niya Sebastian, Nisy John Panicker, PlateGuard: Ensuring Security with YOLOv5 ANPR Technology , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adhil Salim, Advaith Manoj, Alan Thomas Shaji, The Future of Encryption in the Face of Advancing Quantum Computing Technology , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amal P Varghese , Juby Mathew, Advancements in Vehicular Communication Systems: Integrating IoT, Edge Cloud Computing, Microgrid Energy Management, Blockchain, AI, and Simulation Tools , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Joel Lee George, Karthik S Kumar , Riya Merce Thomas, Roshan Roy Varghese, Simy Mary Kurian, Epidemo A Machine Learning Regression-Based , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.