Detection of Autism Spectrum Disorder in Toddlers using Machine Learning
Abstract
The aim of this study is to identify
toddlers at risk for Autism Spectrum Disorder (ASD)
early on by developing a web-based tool that uses the
machine learning method logistic regression. Our
approach emphasises the vital need of early intervention
because it recognises the lifelong impact of ASD on
language development, speech, cognitive, and social
skills, especially when symptoms appear during the first
two years of life. Respondents to nominal questions are
asked to provide a score that indicates the probability of
Autism Spectrum Disorder. Using toddler datasets, our
study demonstrates the efficacy of logistic regression in
producing precise predictions with little characteristics.
The study contributes to the larger objective of
improving the diagnostic process by highlighting the
importance of early discovery in reducing the long-term
impacts of ASD. Crucially, this method is presented as a
quick and affordable substitute for clinical testing,
providing an invaluable tool for enhancing diagnostic
accuracy in cases with toddler ASD.
Keywords:
Autism Spectrum Disorder, Logistic Regression, Machine Learning, Early Detection, Toddler DiagnosisPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Syam Gopi, Evelyn Susan Jacob, Joel John, Raynell Rajeev, Steve Alex, Survey on AI Malware Detection Methods and Cybersecurity Education , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Prinu Vinod Nair, Rohit Subash Nair, Samuel Thomas Mathew S, Ansamol Varghese, Weed detection using YOLOv3 and elimination using organic weedicides with Live feed on Web App , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Abhijith J, Athul Krishna S, Amarthyag P, Angela Rose Baby, Mekha Jose, CATARACT DETECTION USING DIGITAL CAMERA IMAGES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- M Manoj, A S Athira, Rishna Ramesh, Sandhra Gopi, Firoz P U, Smart Attend Insights , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nikita Niteen , Simy Mary Kurian, Exploring Explainable AI, Security and Beyond : A Comprehensive Review , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Dona S Plavelil, A Devanandha, Haritha H Kurupp, Jissin k Jose, DETECTION OF ALZHEIMER’S DISEASE AND ASSISTANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Arya Raj S, R Gopika Krishnan, Drishya Das, Rohith R, Jocelyn Ann Joseph, Personality Profiling Using CV Analysis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adams Mathew, Adithya Sanil, Akhil J Medackal, Nikhil J Medackal, Dyni Thomas, A Literature Review on IMAGE FORGERY DETECTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amala Jayan, Feneesha V B, Rameesa Dilsa C P, Sandra Maryam Binu, Sandra Maryam Binu, Stockwise: A survey on stock price prediction models , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Layana S Pradeep, Milen Ninan Ittiyeipe, Shahina S, Soumya A S, Ojus Thomas Lee , Gayathri Mohan, A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.