Multiple Disease Detection using Machine Learning
Abstract
The project ”Multiple Disease Detection using Machine Learning” aims to develop a system for the accurate and efficient detection of multiple diseases using machine learning algorithms. The system is designed to analyze patient data, including medical history, symptoms, and test results, and predict the likelihood of several diseases simultaneously. The project involves data pre processing, feature selection, and model training using various machine learning techniques such as decision trees, random forests, and support vector machines. The performance of the developed system is evaluated based on metrics such as accuracy, precision, recall, and F1-score using a dataset of patients with multiple diseases. The results of this project have the potential to improve the accuracy and efficiency of disease diagnosis, leading to better patient outcomes and reduced healthcare costs
Keywords:
Support Vector Machine, Logistic Regression, Disease Prediction, Accuracy, PrecisionPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Anna Jose, Anit Devesiya, Albin Scaria Sabu, Anand Baby John, Prof.Maria Yesudas, AMIGO APPLICATION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- M Midhun, Sangeetha Tony, Tibin Abraham, B Vyshnav, ACCIDENT DETECTION USING VIDEO SURVEILLANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Prinu Vinod Nair, Rohit Subash Nair, Samuel Thomas Mathew S, Ansamol Varghese, Weed detection using YOLOv3 and elimination using organic weedicides with Live feed on Web App , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- S Sreejith, Akshara Santhosh, Ardra Haridas, S Jayakrishnan, Ojus Thomas Lee, Chitra Merin Varghese, BrailE- Reading Device for the Deaf and Blind in Real Time Speech , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Athulya Anilkumar, Abhinav V V, Aneeta Shajan, Anjana S Nair, Bini M Issac, R Neenu, Image Descriptor For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Kevin Roy, Lino Shaji, Riya G Johnson, Tince Tomy, Jane George, INTELLIGENT BUDDY , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- K A Arun, Christine Maria Jose , Ann Mathew, Elizabeth Jullu, Lida K Kuriakose, Location-Based Alarm Systems and Service Recommendations for Enhanced Travel Management , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- V Naveen, S Rekha, A Concise Review On E-Commerce Website For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Muneebah Mohyiddeen, Amal E A, Maxen Varghese, Mohammed Rasnal K A, Rohith Sekhar N, SARA: A College Receptionist System , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.