Augmented Neat Algorithm For Enhanced Cognitive Interaction (NEAT-X)
Abstract
Artificial neural networks (ANNs) are utilized in a
variety of practical applications, from pattern recognition to
controlling robots. Neuroevolution (NE), which involves the
artificial evolution of neural networks through the use of genetic
algorithms, has demonstrated significant potential in tackling
complicated reinforcement learning tasks. This paper provides a
comprehensive overview of the leading methods for evolving
artificial neural networks (ANNs), called NeuroEvolution of
Augmenting Topologies(NEAT). NEAT excels in evolving neural
networks with diverse structures but faces scalability challenges,
especially with extensive networks or high-dimensional input
spaces. As the complexity of the problem increases, the search
space expands exponentially, hindering NEAT's exploration
effectiveness. After performing mutation, we identify the best
mutations, and similar substructures are discovered and added to
the mutation list. The improved version of NEAT algorithm
requires less computational resources and will give optimized
solution. After adding it to the mutation list with some minor
modifications, it is demonstrated that the performance of NEAT
can be improved
Keywords:
NeuroEvolution of Augmenting Topologies, NVIDIA Isaac Sim, Artificial neural networks, Neuroevolution.Published
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Arun Robin, Tijo Thomas Titus, Ms. Minu Cherian, Improved Handwritten Digit Recognition Using Deep Learning Technique , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Khalid Hareef, Neenu, M N Sulthana , Nesmi Siddique, Number Plate Detection in Fog and Haze , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Athulya Anilkumar, Abhinav V V, Aneeta Shajan, Anjana S Nair, Bini M Issac, R Neenu, Image Descriptor For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anishamol Abraham, Elbin Santhosh, Diliya Saji, Edwin Roy, Catherine Achu Punnoose, AI Revolutionizing Fashion: A Review of Algorithms and Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Amal P Varghese , Juby Mathew, Advancements in Vehicular Communication Systems: Integrating IoT, Edge Cloud Computing, Microgrid Energy Management, Blockchain, AI, and Simulation Tools , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Jose P Pittappillil, Midhun Mohan, Nimisha Nigel, Nitin Sunil Thomas, Driving Agricultural Innovation: A Review of Technological Advancements in Smart Farming , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Manju Susan Thomas, Juby Mathew, The Integration of Trustworthy AI Values: A Comprehensive Model for Governance, Risk, and Compliance in Audit Architecture Framework context , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Anu Rose Joy, An overview of Fake News DetectionusingBidirectional Long Short-TermMemory(BiLSTM)Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.