Enhancing LSD Image Classification Techniques A Literature Review on Classification Techniques
Abstract
With an emphasis on lumpy skin disease (LSD) in cattle and other skin conditions, this paper provides an extensive literature review on current developments in disease detection approaches for livestock. Through the use of ensemble models, hybrid systems, preprocessing approaches, feature ex- traction strategies, and Convolutional Neural Networks (CNNs), researchers have significantly increased the efficiency and accu- racy of diagnostic procedures. The review summarizes the results of several studies, stressing the advantages and disadvantages of various strategies and offering information on how well they work in agricultural contexts. Integration of domain expertise with im- age analysis, employing ensemble models to improve robustness, and investigating pretreatment methods for data improvement are some of the important subjects covered. This research adds to the ongoing efforts to protect animal welfare and agricultural productivity while revolutionizing disease detection procedures by analyzing the most recent advancements in livestock health monitoring.
Keywords:
Hybrid Systems, Preprocessing ApproachesPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Lis Jose , Achyuth P Murali, Christin Joseph Shaji, Christy Kunjumon Peter , Multiple Detection and Diagnosis of Skin Diseases using CNN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Leo Jose, Navin Shibu George, Raju, Safa Haroon, Bini M Issac, Wearable Technology for Driver Monitoring and Health Management: A Comprehensive Survey , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Aron Thomas , Abhinav B Kannanthanam , Elzabeth Bobus , Adhil Salim , Elizabeth Jullu , R Neenu, A Hybrid SQL Query Execution Model for JSON Data: Balancing Resource Efficiency and Analytical Performance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Yedhukrishnan V, Muhammed Udaif P, Nanditha V S, Navami K Biju, Farisa Sali, Linda Sebastian, A SURVEY ON E-VOTING SYSTEMS USING BLOCKCHAIN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- K A Arun, Christine Maria Jose , Ann Mathew, Elizabeth Jullu, Lida K Kuriakose, Location-Based Alarm Systems and Service Recommendations for Enhanced Travel Management , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Syam Gopi, Evelyn Susan Jacob, Joel John, Raynell Rajeev, Steve Alex, Survey on AI Malware Detection Methods and Cybersecurity Education , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Jane George, A study on Multiple-Instance GPU, Evolution, Architecture and Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Rosamma Sebastian, Devika V Shaji, Brijesh Emmanuel , Jack Jim, A Review Paper On Microstrip Patch Antenna , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Akhil Shaji, Albin Joshy, M J Athulkrishna, Joel Biju, Bino Thomas, COLLEGE BUS SECURITY AND MANAGEMENT SYSTEM , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.