Face Image Synthesis
Abstract
 Facial image synthesis has made rapid dynamic
progress with the fast expansion of deep learning techniques.
Reference samples can give complete primary information about
texture and content in this job and improve the visual quality of
synthetic images. A normalized network with a multi-scale
pyramid structure is used in this instance. The dual-channel
normalization architecture at the center of the normalization
network is capable of obtaining previous knowledge about
various semantics from reference samples. There are two
conditional normalization branches in the DNC specifically.
Through the first branch, the reference image can be spatially
adaptively normalized based on the input image's semantic mask.
The second branch is used to normalize the adaptive
representation of the modified input image on the reference
image. By dividing the complete cross-domain mapping into two
branches, DNC may highlight the distinct significance of
structural and spatial elements. To avoid information
redundancy and improve the final performance, the Gated
Channel Attention Fusion module is used to differentiate and
merge useful information from the two branches. This generated
synthetic image is then compared with photos of criminals in the
crime database. If a match is found, the image will be displayed
along with details about that criminal. Comparing the images is
done by using pillow library with image hashing
Keywords:
Double Channel Normalization network, Gated Channel Attention Fusion, Semantic mask, Spatially-adaptive normalization, Adaptive instance normalizationPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Jane George, A study on Multiple-Instance GPU, Evolution, Architecture and Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Athulya Anilkumar, Abhinav V V, Aneeta Shajan, Anjana S Nair, Bini M Issac, R Neenu, Image Descriptor For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- M Midhun, Sangeetha Tony, Tibin Abraham, B Vyshnav, ACCIDENT DETECTION USING VIDEO SURVEILLANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Lida K Kuriakose, Misha Rose Joseph, R Namitha, Sheezan Niby, Tanver Ahmad Lone, Lip Reading and Reconstruction using ML , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- S Sreejith, Akshara Santhosh, Ardra Haridas, S Jayakrishnan, Ojus Thomas Lee, Chitra Merin Varghese, BrailE- Reading Device for the Deaf and Blind in Real Time Speech , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Nikita Niteen , Simy Mary Kurian, Exploring Explainable AI, Security and Beyond : A Comprehensive Review , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
You may also start an advanced similarity search for this article.

