A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES
Abstract
The remarkable increase in per capita power
consumption worldwide has drawn attention towards the
needed growth in renewable energy sector in order to
bridge the gap between overall demand and supply. In this
project various renewable energy sources like solar, wind
and hydro energy are taken into consideration for the load
estimation. Several factors are considered for the making
of dataset related to each energy source which include
environmental factors as well as other supporting factors.
With the collected data, prediction of energy generation is
performed using the machine learning algorithm, Random
Forest. The generation, transmission and distribution of
the energy is achieved through a power grid system which
enables efficient and reliable supply of electrical power
from power plants to various consumers.
Bidding mechanisms are commonly used in renewable
energy markets to allocate and trade energy generated
from renewable sources. Producers, such as solar farms or
wind power facilities, participate in bidding processes to
sell their energy to different distribution centres through
grid. Bids may include details like the quantity of energy,
pricing, and timing of delivery
Keywords:
Renewable energy integration, machine learning algorithms, power spot market bidding, block chain-based energy market, solar energy profilesPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Akhil Shaji, Albin Joshy, M J Athulkrishna, Joel Biju, Bino Thomas, COLLEGE BUS SECURITY AND MANAGEMENT SYSTEM , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- AbhilashV Pandiankal, Jacob Abraham, Human Immunity Gainer (HIG) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Muhammed Saalim O.S, Fathima Parvin M.A, Albiya Hameed, Hiba Fathima T.S, Amritha Soloman, AGRISEN Precise irrigation System and Smart health monitoring system , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Amrutha Priya C B, Nitha C Velayudhan, Arjun K S, Aleena Francis, Divya P S, AI Enabled Robot for Data Collection in Unreachable and Extreme Environment , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ansamol Varghese, Milu Mary Jacob, Shilpa Mariam James, Reeba Rebecca Varghese, Vimal sajan George, A Review on Integrating IoT and Robotics for Improved Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Rintu Jose, Study on Separable Reversible Data Hiding in Encrypted Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Prof. Manoj T Joy, Noel Shaji, Sharon Sunil, Thomas Johanson, Ridhin Joseph, IoT-Based Smart Aquaponics System with Remote Monitoring and Actuator Control , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Shana Shaji, Jerin Jose, Jeny Jose, GLOBAL ISSUES OF PLASTICS ON ENVIORNMENT AND PUBLIC HEALTH , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- P S Aswin, Archana Madhusudhanan , Athulya Sajeev, Neeha Moideen , C R Suhail, Revolutionizing Football Management: A Data-Driven Approach with Random Forest Regressor , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jyothika Anil, Milan Joseph Mathew, Namitha S Mukkadan, Reshmi Raveendran, Rintu Jose, Driver Drowsiness Detection Using Smartphone Application , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.