A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES
Abstract
The remarkable increase in per capita power
consumption worldwide has drawn attention towards the
needed growth in renewable energy sector in order to
bridge the gap between overall demand and supply. In this
project various renewable energy sources like solar, wind
and hydro energy are taken into consideration for the load
estimation. Several factors are considered for the making
of dataset related to each energy source which include
environmental factors as well as other supporting factors.
With the collected data, prediction of energy generation is
performed using the machine learning algorithm, Random
Forest. The generation, transmission and distribution of
the energy is achieved through a power grid system which
enables efficient and reliable supply of electrical power
from power plants to various consumers.
Bidding mechanisms are commonly used in renewable
energy markets to allocate and trade energy generated
from renewable sources. Producers, such as solar farms or
wind power facilities, participate in bidding processes to
sell their energy to different distribution centres through
grid. Bids may include details like the quantity of energy,
pricing, and timing of delivery
Keywords:
Renewable energy integration, machine learning algorithms, power spot market bidding, block chain-based energy market, solar energy profilesPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- M Sreedharsh, S Saurav, Albin Joseph, Sravan Chandran , Lida K Kuriakose, Childhood Epilepsy Syndrome Classification through a Deep Learning Network with Clinical History Integration , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nighila Ashok, Adithya Ajith, Aparna Shaju, Arjuna Chandran V V, Fahmi Fathima T S, DeepScan : A Deepfake Video Detection System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- K A Arun, Christine Maria Jose , Ann Mathew, Elizabeth Jullu, Lida K Kuriakose, Location-Based Alarm Systems and Service Recommendations for Enhanced Travel Management , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- George P Kurias, Gokul Krishna AU, Jifith Joseph, Sharunmon R, Linsa Mathew, A Review of Methodologies for Detecting Missing and Wanted People Using Machine Learning and Video Surveillance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Joel Lee George, Karthik S Kumar , Riya Merce Thomas, Roshan Roy Varghese, Simy Mary Kurian, Epidemo A Machine Learning Regression-Based , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ryan Leo , Mathews P Jose, Eirene Nikky , Lloyd Micheal, Chinnu Edwin A , Controlling a Mini Game using a Brain-Computer Interface , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Krishnendu B, Sreelakshmi A, Sumayya Maheen, Zameel Hassan, Honey Joseph, Chatbot-Enabled Symptom Assessment: Revolutionizing Disease Diagnosis and Patient Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Athulya Anilkumar, Abhinav V V, Aneeta Shajan, Anjana S Nair, Bini M Issac, R Neenu, Image Descriptor For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- ANU ROSE JOY, Christeena Antony, Dona Mariyam John, Anuja Sara Mathew, Christeen Mareia Paul, UnLocking Emotion Recognition in ASD Children: Analyzing Facial Expressions , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr.Amal M R, Allen Joseph, Jishnu suresh, Abhijith selvam, Aravind A S, AI Based Multi Robot Fire Suppression System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.