CARDAMOM PLANT DISEASE DETECTION USING ROBOT
Abstract
The cardamom plant has various types of diseases. Among these diseases, leaf blight and leaf spot cause too much damage. Early detection and prevention of these diseases is done with the help of a robot. In this approach, we proceed in several steps. i.e. image collection, image processing, machine learning, image classification and fertilizer design. Cardamom is the queen of spices. It is indigenously grown in the evergreen forests of Karnataka, Kerala, Tamil Nadu and the north-eastern states of India. India is the third largest producer of cardamom. Plant diseases have a disastrous effect on the safety of food production; they reduce the eminence and quantity of agricultural products. Plant diseases can cause significantly high losses or no harvest in severe cases. Various diseases and pests affect the growth of cardamom plants at different stages and crop yields. This study focused on two cardamom plant diseases, Colletotrichum Blight and Phyllosticta Leaf Spot of cardamom and three grape diseases, Black Rot, ESCA and Isariopsis Leaf Spot. Various methods have been proposed to detect plant diseases and deep learning has become the preferred method due to its spectacular success. In this study, U2-Net was used to remove the unwanted background of the input image by selecting multi-scale features. This work proposes an approach for disease detection of cardamom plants using the EfficientNetV2 model. A comprehensive set of experiments was conducted to investigate the performance of the proposed approach and compare it with other models such as EfficientNet and Convolutional Neural Network (CNN).
Keywords:
CNN - Convolutional Neural Network, GLCM - Gray Level Co-occurrence Matrix, Deep Learning, Machine Learning, Soft Computing, Computer Vision, Artifical Intelligence, Artificial Neural NetworkPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Dr. Indu John, Gauri Santhosh, Jesna Susan Reji, Abdul Musawir, Glady Prince, Detection of Autism Spectrum Disorder in Toddlers using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dona S Plavelil, A Devanandha, Haritha H Kurupp, Jissin k Jose, DETECTION OF ALZHEIMER’S DISEASE AND ASSISTANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Arya Raj S, R Gopika Krishnan, Drishya Das, Rohith R, Jocelyn Ann Joseph, Personality Profiling Using CV Analysis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Layana S Pradeep, Milen Ninan Ittiyeipe, Shahina S, Soumya A S, Ojus Thomas Lee , Gayathri Mohan, A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Goutham P Raj, Gregan George, Hadii Hasan, John Ashwin Delmon, V Pradeeba, COMPREHENSIVE VEHICLE SERVICES & E-COMMERCE PLATFORM WITH PRICE PREDICTION USING ML , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Anna N Kurian, Amitha Anil, Andriya Raju, Ancita J Feriah, Aiswarya Lakshmi Navami, Deep Learning based Multimodal Brain MRI Tumor Classification as a Diagnostic Tool to Benefit Clinical Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Adona Shibu, Aarunya Retheep, Albin Joseph, Ali Jasim, Adona Shibu , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Joel Lee George, Karthik S Kumar , Riya Merce Thomas, Roshan Roy Varghese, Simy Mary Kurian, Epidemo A Machine Learning Regression-Based , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adithya Satheesh, Ashwin S Nair, Darren Padamittam Jacob, Athul Rajeev, Er. Maheshwary Sreenath, Intrusion Countermeasure System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adithya Satheesh, Ashwin S Nair, Darren Padamittam Jacob, Athul Rajeev, Er. Maheshwary Sreenath, Intrusion Countermeasure System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.