Crop Recommendation System using Machine Learning and IoT
Abstract
In many regions across the globe, agriculture
re- mains the cornerstone of livelihoods, with a
significant portion of the population relying on it as
their primary occupation. The success of agricultural
endeavors hinges greatly on crop production, making it
a crucial aspect of sustenance and economic stability. To
address the challenge of ensuring optimal crop yields, a
cutting-edge solution integrating IoT (Internet of
Things) and ML (Machine Learning) technologies has
emerged. This innovative system employs sensor-based
soil testing to meticulously assess soil conditions,
thereby mitigating the risk of soil degradation and
fostering healthy crop growth. A variety of sensors are
deployed within this system, each tasked with
monitoring specific soil parameters essential for crop
health. These sensors include those for measuring soil
temperature, moisture levels, pH balance, and nutrient
composition (NPK). By continuously gathering data on
these crucial factors, the system builds a comprehensive
understanding of soil dynamics. The collected data is
then transmitted to a microcontroller, where it is
subjected to rigorous analysis utilizing sophisticated
machine learning algorithms such as random forest.
Through this analytical process, the system generates
actionable insights and recommendations tailored to
optimize crop growth conditions. Ultimately, this
integrated IoT and ML system represents a
groundbreaking approach to agricultural management,
empowering farmers with real- time, data-driven
guidance to enhance crop productivity and
sustainability.
Keywords:
Iot, Machine learning, Crops, SensorsPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Prayag Suresh, Sneha Susan Alex, Rojan Varghese, Thomas Zacharias, Shiney Thomas, Survey of Strabismus Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr Anil A R, Amit Sankar Arun, Anandhu Anilkumar, Anandu S Sivan, Anoop Manoharan, DESIGNING OF A VOICE – BASED PROGRAMMING IDE FOR SOURCE CODE GENERATION , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Sandra Raju, Dr S Sruthy, A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Honey Thomas, Linna Benny, Saya Nezrin, Navya Neethi S, Niya Joseph, Smart Communication Software for the Hearing Impaired Using Artificial Intelligence , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Akhil Shaji, Albin Joshy, M J Athulkrishna, Joel Biju, Bino Thomas, COLLEGE BUS SECURITY AND MANAGEMENT SYSTEM , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amrutha Priya C B, Nitha C Velayudhan, Arjun K S, Aleena Francis, Divya P S, AI Enabled Robot for Data Collection in Unreachable and Extreme Environment , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nihal Anil, Ms. Nighila Abhish, Jesila Joy , Noora Sajil , P R Vishnuraj, Augmented Neat Algorithm For Enhanced Cognitive Interaction (NEAT-X) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Joyal Joby Joseph, Michael Abraham Philips, Noel J Abraham, Steffi Maria Saji, Shiney Thomas, A Review of Parkinson Disease Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.