Unmasking Fraudulent Job Ads: A Critical Review of Machine Learning Techniques for Detecting Fake Jobs
Abstract
In today’s technology-driven world, where everything is just a few clicks away, online job postings have also increased clearly, allowing job seekers to apply for jobs via various online job portals. While this has made job hunting easier, the rise of fraudulent job advertisements has also augmented tremendously. Fraudulent job advertisements are created to deceive job seekers by extracting their personal information for several malicious purposes or monetary gain. It has become the need of the hour to protect job seekers from potential financial and identity theft by detecting these fraudulent job advertisements. This paper focuses on reviewing some
recent research on the detection of fraudulent job advertisements using machine learning approaches. In this paper, seven research papers were analyzed, focusing on the datasets, feature engineering techniques, machine learning algorithms, and evaluation metrics used to detect fraudulent job advertisements. The paper concludes by highlighting the current challenges and future directions for research in this area.
Keywords:
Machine Learning, Fraudulent job advertisements, Fake job advertisements, Natural Language Processing, Logic Regression, Random Forest, Naive Bayes, Decision Tree, Gradient Boosting, Support Vector Classifier, Feature Engineering, Feature ExtractionPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Aniruddha Das, Avisikta Modak, The Carbon footprint of Machine Learning Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Nikita Niteen , Simy Mary Kurian, Exploring Explainable AI, Security and Beyond : A Comprehensive Review , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Krishnendu B, Sreelakshmi A, Sumayya Maheen, Zameel Hassan, Honey Joseph, Chatbot-Enabled Symptom Assessment: Revolutionizing Disease Diagnosis and Patient Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- V Naveen, S Rekha, A Concise Review On E-Commerce Website For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Athira Sankar, Sajishma S R, Alan Raj, Vaishnavi A K, Reshmi S Kaimal, Hydro Sense: Empowering Water Quality Monitoring Through IoT And ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nighila Ashok, Adithya Ajith, Aparna Shaju, Arjuna Chandran V V, Fahmi Fathima T S, DeepScan : A Deepfake Video Detection System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Kevin Roy, Lino Shaji, Riya G Johnson, Tince Tomy, Jane George, INTELLIGENT BUDDY , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- R Karthika, Maria Toms, S R Aadrash, P U Prabath, InsightAI: Bridging Natural Language and Data Analytics , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Sebastian Biju, Samuel Michael, Thomas Mathew Jose, Mathew Abraham, Minu Cherian, A Review of Machine Learning Approaches for Canine Skin Disease Detection Using Image Processing Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.