Unmasking Fraudulent Job Ads: A Critical Review of Machine Learning Techniques for Detecting Fake Jobs
Abstract
In today’s technology-driven world, where everything is just a few clicks away, online job postings have also increased clearly, allowing job seekers to apply for jobs via various online job portals. While this has made job hunting easier, the rise of fraudulent job advertisements has also augmented tremendously. Fraudulent job advertisements are created to deceive job seekers by extracting their personal information for several malicious purposes or monetary gain. It has become the need of the hour to protect job seekers from potential financial and identity theft by detecting these fraudulent job advertisements. This paper focuses on reviewing some
recent research on the detection of fraudulent job advertisements using machine learning approaches. In this paper, seven research papers were analyzed, focusing on the datasets, feature engineering techniques, machine learning algorithms, and evaluation metrics used to detect fraudulent job advertisements. The paper concludes by highlighting the current challenges and future directions for research in this area.
Keywords:
Machine Learning, Fraudulent job advertisements, Fake job advertisements, Natural Language Processing, Logic Regression, Random Forest, Naive Bayes, Decision Tree, Gradient Boosting, Support Vector Classifier, Feature Engineering, Feature ExtractionPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Adams Mathew, Adithya Sanil, Akhil J Medackal, Nikhil J Medackal, Dyni Thomas, A Literature Review on IMAGE FORGERY DETECTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Parvathy S Kurup, Pranav P Nair, Sai Kishor, Aryan S Nair, Pranav P, Face Image Synthesis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr. S. Perumal Sankar, P K Renjith, Ahammed Suhail P.I, Aswathy P S, Nithya Mary K J , Sharon K J, iAssist – An Intelligent Reading Assistant for Visually Impaired , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Akhil Mohan , E R Sreema, Leshma Mohandas , P U Prabath, Saeedh Mohammed , Virtual Air Canvas , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Lida K Kuriakose, Overview of Lip Reading Methods: Issues, Current Developments, and Future Prospects , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ann Mary Babu, Anto K Thomas, Aswin Sebastian, Beffin K Lalu, Dr Jacob John, Assistive Technology For Deaf And Dumb , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Lida K Kuriakose, Misha Rose Joseph, R Namitha, Sheezan Niby, Tanver Ahmad Lone, Lip Reading and Reconstruction using ML , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Juby Mathew, Maria Jojo, Neha Ann Samson, Noell Biju Michael, Ron T Alumkal, PulseSync: IoT-Enabled Monitoring and Predictive Analytics for Healthcare , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.