A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection
Abstract
In the era of digital communication, the prolifer- ation of social media has facilitated the exchange of ideas but has also led to the rampant dissemination of offensive and toxic content. This paper aims to explore the advancements in machine learning (ML) and deep learning (DL) techniques specifically tailored for offensive text detection within social media posts. We begin by examining various ML models, including Logistic Regression, Support Vector Machines (SVM), and Random Forests, which have been effectively utilized for classifying toxic language. Additionally, we investigate deep learning approaches, such as BERT and its derivatives, which leverage contextual understanding for enhanced performance in identifying and miti- gating offensive content. Furthermore, we analyze text extraction models, including YOLO and SSD MobileNet V2, which facilitate the detection of text in images shared across social platforms. Through a comparative analysis of these technologies, we discuss their advantages, limitations, and practical applications in real-time detection systems. Our findings indicate that while traditional ML models provide a solid foundation for offensive text detection, the integration of deep learning methodologies significantly improves classification accuracy and contextual sensitivity. This paper highlights the importance of deploying these advanced techniques to foster safer online environments and mitigate the adverse effects of harmful communication on social media.
Keywords:
Offensive Text Detection, Machine Learning (ML), Deep Learning (DL), Toxic Language Classification, BERT Model, Social Media Content Moderation, Support Vector Machines (SVM), Text Extraction, YOLOv4, YOLOv5, Image-based Text Detection, CNN-LSTM, Natural Language ProcessingPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Adithya Satheesh, Ashwin S Nair, Darren Padamittam Jacob, Athul Rajeev, Er. Maheshwary Sreenath, Intrusion Countermeasure System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adithya Satheesh, Ashwin S Nair, Darren Padamittam Jacob, Athul Rajeev, Er. Maheshwary Sreenath, Intrusion Countermeasure System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ryan Leo , Mathews P Jose, Eirene Nikky , Lloyd Micheal, Chinnu Edwin A , Controlling a Mini Game using a Brain-Computer Interface , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- V Naveen, S Rekha, A Concise Review On E-Commerce Website For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Krishnendu B, Sreelakshmi A, Sumayya Maheen, Zameel Hassan, Honey Joseph, Chatbot-Enabled Symptom Assessment: Revolutionizing Disease Diagnosis and Patient Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jibin Jacob, Joel John, John Ashwin Delmon, Farhan Zuhair, Sinciya P.O, LOCAL WANDERER , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Joyal Joby Joseph, Michael Abraham Philips, Noel J Abraham, Steffi Maria Saji, Shiney Thomas, A Review of Parkinson Disease Detection Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Parvathy S Kurup, Pranav P Nair, Sai Kishor, Aryan S Nair, Pranav P, Face Image Synthesis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nebin Mathew John, Vivek Manojkumar Nair, Sam Stephen Thomas, Blockchain Enhanced Web Application for Anonymous Drug Abuse Reporting and Recovery in the Indian Context , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.
