A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing
Abstract
Pothole detection is crucial for road safety and maintenance, driving research towards automated and efficient detection systems. Traditional methods present limitations: public reporting, while cost-effective, relies on citizen participation and lacks real-time information; vibration-based methods, using accelerometers to detect vehicle vibrations, require driving over potholes. Image/video processing techniques offer a proactive approach by analysing visual data to identify potholes. These methods often leverage computer vision algorithms, 3D scene reconstruction, and machine learning strategies for enhanced accuracy. Researchers are exploring deep learning models like Convolutional Neural Networks (CNNs) and YOLOv2 to im- prove real-time pothole detection accuracy and efficiency. These advancements, including stereo vision-based systems with high detection rates and pixel-level accuracy, contribute to timely pothole detection and repair, ultimately improving road safety.
Keywords:
simple linear iterative clustering, superpixel, DCNN, 2D image analysis, adaptive threshold- ing, traffic sign recognition, SegCrackNet, visual odometryPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Jyothika Anil, Milan Joseph Mathew, Namitha S Mukkadan, Reshmi Raveendran, Rintu Jose, Driver Drowsiness Detection Using Smartphone Application , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Muneebah Mohyiddeen, Sana T.H, Anoodh Hussain, Nandana P Narayanan, Sneha Soman, DGCURE: Model for Detection of Dysgraphia , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Aaron Samuel Mathew, Joel John, Exploring the Evolution of Software Engineering with Generative AI , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- AbhilashV Pandiankal, Jacob Abraham, Human Immunity Gainer (HIG) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ankith Issac Dominic, Meera Johnson, Jaida Fathima, Alaina Benny, Amritha Soloman, PARK-EZE: An IoT based Smart Parking System using DLSTM Prediction , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nighila Ashok, Adithya Ajith, Aparna Shaju, Arjuna Chandran V V, Fahmi Fathima T S, DeepScan : A Deepfake Video Detection System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Charukesh, Ethical Hacking using the Switch Port Analyser in a Enterprise Network , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Nihal Anil, Ms. Nighila Abhish, Jesila Joy , Noora Sajil , P R Vishnuraj, Augmented Neat Algorithm For Enhanced Cognitive Interaction (NEAT-X) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Krishnendu B, Sreelakshmi A, Sumayya Maheen, Zameel Hassan, Honey Joseph, Chatbot-Enabled Symptom Assessment: Revolutionizing Disease Diagnosis and Patient Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ansamol Varghese, Anandhu Anoj, Emil Thomas, Deepta K Sunny, Angel Thomas, TrueNews: AI Powered Detection of Manipulated Text and Images , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.