Improved Handwritten Digit Recognition Using Deep Learning Technique
Abstract
Handwritten digit recognition (HDR) is a fascinating field of research with practical applications in various domains. Imagine automatically processing checks, deciphering handwritten notes, or interacting with devices using intuitive scribbles - this is the potential of HDR.HDR tasks a computer with understanding the nuances of human handwriting, a seemingly simple yet surprisingly complex endeavor. Unlike standardized fonts, individual handwriting styles exhibit unique characteristics, making recognition a challenging feat.Variations in pressure, slant, size, and even individual loopsand strokes all contribute to the individuality of handwritten digits. Despite these challenges, HDR research continues to evolve, with deep learning techniques playing a crucial role
in recent advancements. This paper explores the state-of-theart in deep learning-based HDR and proposes an innovative approach to address the aforementioned challenges. In this Paper, to evaluate CNN’s performance, we used the MNIST dataset, which contains 70,000 images of handwritten digits. Achieves 98.2% accuracy for handwritten digit. And where 40 of the total images were used to test the data set
Keywords:
HanHandwritten digit recognition, Convolution Neural Networks (CNN), MNIST dataset, Pytorch, DeepLearningPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Honey Thomas, Linna Benny, Saya Nezrin, Navya Neethi S, Niya Joseph, AI-Powered Assistive Communication Software for the Deaf , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Fabeela Ali Rawther, Abhinay A K, Anagha Tess B, Alan Joseph, Adham Saheer, Survey of Machine Learning and Deep Learning Approaches for Automated Hate Speech Detection and Sentiment Analysis in Multilingual Contexts , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Nikita Niteen , Simy Mary Kurian, Exploring Explainable AI, Security and Beyond : A Comprehensive Review , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Shiney Thomas, Elsa George, Alphonsa Francis, Anna Job, Ann Maria James, Wildlife Detection And Recognition Using YOLO V8 , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Amal P Varghese , Juby Mathew, Advancements in Vehicular Communication Systems: Integrating IoT, Edge Cloud Computing, Microgrid Energy Management, Blockchain, AI, and Simulation Tools , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Mekha Jose, Jocelyn Anthony, Jose V Joseph, Joshwa Thomas, Sharon Baby Thomas, A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Anna N Kurian, Amitha Anil, Andriya Raju, Ancita J Feriah, Aiswarya Lakshmi Navami, Deep Learning based Multimodal Brain MRI Tumor Classification as a Diagnostic Tool to Benefit Clinical Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Anishamol Abraham, Elbin Santhosh, Diliya Saji, Edwin Roy, Catherine Achu Punnoose, AI Revolutionizing Fashion: A Review of Algorithms and Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Ansamol Varghese, Anandhu Anoj, Emil Thomas, Deepta K Sunny, Angel Thomas, TrueNews: AI Powered Detection of Manipulated Text and Images , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.