Predictive Maintenance of Machines Using IoT and Machine Learning
Abstract
This paper reviews the development and the advancements which have been made in the intelligent predictive maintenance system, which uses the Internet of Things to improve machine reliability and optimize the management schedules in maintenance. Sensors play a vital role in IoT as it incorporates machines used in terms of monitoring and controlling fundamental machine parameters such as temperature, vibration, and pressure, which provide real-time data analysis. This paper discusses machine learning algorithms, clustering techniques, and other data analysis methods in anomaly detection and the prognosis of potential equipment failures. In these systems, some of the principal stages include data collection; real-time streaming; data preprocessing; and anomaly detection. Further on, the paper addresses some challenges such as integrating sensor data coming from heterogeneous sources, the real-time nature required for their processing, and large industrial-scale scaling. This review states the increased adoption of IoT-driven predictive maintenance and its potential for industrial operations to change. It is really all about reducing downtime in industries and improving efficiency.
Keywords:
Predictive Maintenance, IoT Sensors, Anomaly Detection,, Machine Learning, Industrial IoTPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Jyothis Joseph, Angeetha Raju, Aparna Santhosh, Ashitha Jenish, K S Minu, Survey on Fake Profile Detection in Social Media , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dipjyoti Deka, Rituparna Seal, Shubham Banik, Unmasking Fraudulent Job Ads: A Critical Review of Machine Learning Techniques for Detecting Fake Jobs , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Amal P Varghese, Simy Mary Kurian, Advancements in ECG Heartbeat Classification: A Comprehensive Review of Deep Learning Approaches and Imbalanced Data Solutions , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Nighila Ashok, Adithya Ajith, Aparna Shaju, Arjuna Chandran V V, Fahmi Fathima T S, DeepScan : A Deepfake Video Detection System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr. Indu John, Gauri Santhosh, Jesna Susan Reji, Abdul Musawir, Glady Prince, Detection of Autism Spectrum Disorder in Toddlers using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Amith Bino, Don Peter Joseph, Sreehari P, Anchal J Vattakunnel, Revolutionizing Nutritional Management Through Food Scanning And Object Detection: A New Android Application For Adults , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.