Advanced Sensor-Based Landslide and Earthquake Detection and Alert System Utilizing Machine Learning and Computer Vision Technologies
Abstract
—This paper presents a comprehensive analysis of the transformative role of the Internet of Things (IoT) and Machine Learning (ML) in advancing landslide monitoring and prediction for enhanced disaster resilience. Landslides, a prevalent natural hazard, pose substantial risks to life, infrastructure, and socio economic stability, particularly in geographically vulnerable regions. The inherent complexity of landslides, triggered by a confluence of geological, hydrological, and meteorological factors, necessitates advanced monitoring and prediction techniques to mitigate their devastating impacts. Traditional monitoring ap proaches, often constrained by limited spatial coverage, data resolution, and realtime analysis capabilities, struggle to provide timely and accurate warnings. The emergence of IoT and ML offers a paradigm shift in landslide monitoring and prediction, enabling real-time data acquisition, sophisticated analysis, and proactive risk management. IoT-enabled sensor networks, com prising diverse sensors strategically deployed across landslide prone areas, provide continuous data streams on critical param eters such as rainfall intensity and duration, soil moisture content, pore-water pressure, ground vibrations (microseismic activity), and slope deformation. These sensors, often low-cost, low-power, and wirelessly interconnected, transmit data to edge computing devices or cloud-based platforms for real-time processing and analysis. ML algorithms, trained on historical landslide data and associated parameters, play a pivotal role in deciphering complex patterns and anomalies within these large datasets. The sources demonstrate the effectiveness of various ML models, including Random Forest, Support Vector Machines (SVM), K-Nearest Neighbor (KNN), and Convolutional Neural Networks (CNN), in landslide susceptibility mapping, hazard assessment, and early warning system development.
Keywords:
Internet of Things (IoT), Landslide, Machine Learning (ML), Sensor Networks, Early Warning Systems, Data Analysis, Prediction ModelsPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Adithya Satheesh, Ashwin S Nair, Darren Padamittam Jacob, Athul Rajeev, Er. Maheshwary Sreenath, Intrusion Countermeasure System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- V Naveen, S Rekha, A Concise Review On E-Commerce Website For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Kevin Roy, Lino Shaji, Riya G Johnson, Tince Tomy, Jane George, INTELLIGENT BUDDY , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Peter Cyriac, Binu B. R., An Integrated Approach to Campus Water Management: Leveraging Wireless Automation and Advanced Virtual Leakage Auditing , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aadithya Hari Nair, Adithi R Kumar, Aleena Thomas, Jeffy Shiju, Tom Kurian, Dynamic Traffic Light Control: A Novel Approach for Congestion Mitigation and Traffic Optimization , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adith Ajay, Automatic Fall Detection And Alert System For Home Safety , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Honey Thomas, Linna Benny, Saya Nezrin, Navya Neethi S, Niya Joseph, Smart Communication Software for the Hearing Impaired Using Artificial Intelligence , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Sandra Raju, Dr S Sruthy, A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- NS AkhilRaj, Snehil Jacob Raju, John Basil Varghese, Sreeraj K S, Yadukrishnan P, Directio-AR Assisted ShopMate , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.
