A Survey and Analysis on Predicting Heart Disease Using Machine Learning Techniques
Abstract
The early prognosis of cardiovascular diseases can
aid in making decisions to lifestyle changes in high-risk patients and in turn reduce their complications. Predicting heart disease using machine learning techniques has been a popular and promising area of research in recent years. Machine learning models can analyze large amounts of medical data and extract patterns and relationships that can help in predicting the likelihood of heart disease in individuals. We can conduct a survey and analysis to predict heart disease using machine learning techniques. Predicting heart disease using machine learning techniques is a promising area of research, and there have been several studies conducted in this field. Here is an overview of a survey and analysis of some of the most prominent studies on this topic. This paper compares the accuracies of different machine learning algorithms on the Cleveland Heart Disease Database in order to present an accurate model of predicting heart disease.
Keywords:
Machine Learning, Classification Techniques, Prediction, Heart DiseasePublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Adith Ajay, Automatic Fall Detection And Alert System For Home Safety , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ankith Issac Dominic, Meera Johnson, Jaida Fathima, Alaina Benny, Amritha Soloman, PARK-EZE: An IoT based Smart Parking System using DLSTM Prediction , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jane George, A study on Multiple-Instance GPU, Evolution, Architecture and Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Jyothika Anil, Milan Joseph Mathew, Namitha S Mukkadan, Reshmi Raveendran, Rintu Jose, Driver Drowsiness Detection Using Smartphone Application , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Romal Raju, Sandra Madhu, TS Athulya, Rekha K S, Aparna Unni, Smart Meter using Blockchain , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- S Sreejith, Akshara Santhosh, Ardra Haridas, S Jayakrishnan, Ojus Thomas Lee, Chitra Merin Varghese, BrailE- Reading Device for the Deaf and Blind in Real Time Speech , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Niya Joseph, Tintu Alphonsa Thomas, A Systematic Review of Content-Based Image Retrieval Techniques , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Rosamma Sebastian, Devika V Shaji, Brijesh Emmanuel , Jack Jim, A Review Paper On Microstrip Patch Antenna , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Jacob John, Aadhi Lakshmi M R, Alan Thomas Shaji, Alphonsa Francis, Adithyan Suresh Kumar, An Idea Sharing and Validation Platform Using Blockchain with Delegated Proof of Contribution (DPoC) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.