Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems
Abstract
This review paper delves into the intricate landscape of security vulnerabilities within deep learning frameworks, specifically focusing on adversarial attacks and their impact across diverse AI applications. It scrutinizes vulnerabilities in neural network models, reinforcement learning policies, Natural Language Processing (NLP) classifiers, cloud-based image detectors, and deep convolutional neural networks (CNNs). The paper illuminates’ techniques such as adversarial example generation and their applicability in exploiting vulnerabilities in various scenarios, underlining the imperative need for robust defense mechanisms. Additionally, it explores innovative methodologies like influence functions and outlier detection to enhance understanding, debug models, and fortify defenses
against adversarial attacks. The paper concludes by accentuating the critical importance of addressing these vulnerabilities and fostering further research in securing AI systems against potential threats. Absolutely! Here a simpler abstract that captures the essence of your review paper: It looks at how sneaky tricks can fool smart AI systems. It talks about how bad guys can make AI mess up, even in important things like self-driving cars, language understanding, and image recognition. The paper shows different ways these tricks work and how they can be used against various types of AI. It also shares some cool ideas to make AI safer and tougher against these tricks. The paper ends by saying it really important to make AI safer from these sneaky attacks.
Keywords:
Deep Learning Security, Vulnerabilities in AI Systems, Neural Network Vulnerability, Reinforcement Learning Vulnerabilities, Adversarial Examples, Defense Mechanisms in Deep Learning, Natural Language Processing (NLP) Security, Cloud-Based Image Detectors, Convolutional Neural Networks (CNNs) Vulnerabilities, Machine Learning Security Risks, Adversarial Examples in Physical World, Interpretability of Deep Neural Networks, Obfuscated Gradients, Defense Strategies against Adversarial AttacksPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Adith Ajay, Automatic Fall Detection And Alert System For Home Safety , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amith Bino, Don Peter Joseph, Sreehari P, Anchal J Vattakunnel, Revolutionizing Nutritional Management Through Food Scanning And Object Detection: A New Android Application For Adults , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Prof.Pavitha P.P , S Abhinav, Abida P Vaidyan , B Parvathi, A Critical Evaluation on Line of Sight Based Data Transmission A Review , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jyothis Joseph, Angeetha Raju, Aparna Santhosh, Ashitha Jenish, K S Minu, Survey on Fake Profile Detection in Social Media , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Akil Saji, Sreeyuktha Ramesh, Aabel Jacob, Saumya Sadanadan, Rosmartina Shaju, Dr S N Kumar, Enhancing Image Security with Introduction to Blockchain , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Sinciya P.O , Ameena Ismail, Christin Abu, Don P Mathew, Gokul Krishnan G , Enhancing LSD Image Classification Techniques A Literature Review on Classification Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Goutham P Raj, Gregan George, Hadii Hasan, John Ashwin Delmon, V Pradeeba, COMPREHENSIVE VEHICLE SERVICES & E-COMMERCE PLATFORM WITH PRICE PREDICTION USING ML , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Akshaya Babu, Amala Saju, Athulya C A, Mary Niya Sebastian, Nisy John Panicker, PlateGuard: Ensuring Security with YOLOv5 ANPR Technology , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Sebin Thomas, John VG, Josin Chacko, Mariyam Shajahan, Sharon Sunny, PPT GENERATION FROM REPORT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Adhil Salim, Advaith Manoj, Alan Thomas Shaji, The Future of Encryption in the Face of Advancing Quantum Computing Technology , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.
