A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet
Abstract
A brain tumor occurs when there is an atypical
proliferation of cells in the brain, resulting in abnormal growth. The survival rate of patients with brain tumors is difficult to determine due to their infrequent occurrence and various forms. Magnetic Resonance Imaging (MRI) plays a crucial role in identifying tumor sites, but manual detection is time-consuming and prone to errors. Innovative breakthroughs in artificial intelligence, particularly in the realm of deep learning (DL), have paved the way for the creation of DL models that utilize MRI images for diagnosing brain tumors. In this paper, a three-step preprocessing approach is proposed to enhance the quality of
MRI images, along with a Convolutional Neural Network (CNN) based on the EfficientNet-B0 model for accurate diagnosis of glioma, meningioma, pituitary tumors, and normal images. The model is designed to be computationally efficient, featuring a small number of convolutional and max-pooling layers, which allows for swift training iterations. The model achieved a 95.81% accuracy in detecting glioma, 97.54% accuracy in detecting meningioma, 96.89% accuracy in detecting pituitary tumors, and 97.14% accuracy in detecting normal images when tested on a dataset of 3394 MRI images.
Keywords:
glioma, meningioma, pituitary, AI, Efficient net-B0Published
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Akhil Mohan , E R Sreema, Leshma Mohandas , P U Prabath, Saeedh Mohammed , Virtual Air Canvas , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr.Amal M R, Allen Joseph, Jishnu suresh, Abhijith selvam, Aravind A S, AI Based Multi Robot Fire Suppression System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Prinu Vinod Nair, Rohit Subash Nair, Samuel Thomas Mathew S, Ansamol Varghese, Weed detection using YOLOv3 and elimination using organic weedicides with Live feed on Web App , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jibin Jacob, Joel John, John Ashwin Delmon, Farhan Zuhair, Sinciya P.O, LOCAL WANDERER , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aaron Samuel Mathew, Adhil Salim , From Exorbitant to Affordable: The Evolution of AI Training Costs , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Akil Saji, Sreeyuktha Ramesh, Aabel Jacob, Saumya Sadanadan, Rosmartina Shaju, Dr S N Kumar, Enhancing Image Security with Introduction to Blockchain , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Adhil Salim, Advaith Manoj, Alan Thomas Shaji, The Future of Encryption in the Face of Advancing Quantum Computing Technology , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- S Sreejith, Akshara Santhosh, Ardra Haridas, S Jayakrishnan, Ojus Thomas Lee, Chitra Merin Varghese, BrailE- Reading Device for the Deaf and Blind in Real Time Speech , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Athulya Anilkumar, Abhinav V V, Aneeta Shajan, Anjana S Nair, Bini M Issac, R Neenu, Image Descriptor For Visually Impaired , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Romal Raju, Sandra Madhu, TS Athulya, Rekha K S, Aparna Unni, Smart Meter using Blockchain , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.