State-of-the-Art Techniques for Image Forgery Detection: A Review
Abstract
Image forgery has become a widespread issue due
to the ease with which digital images can be manipulated and altered. As a result, the development of techniques for detecting image forgery has become an important area of research in the field of digital forensics. In this review, it provides an overview of various techniques for detecting image forgery, including both passive and active approaches. This paper discusses the pros and cons of each approach, as well as their performance in terms of detection accuracy, robustness, and other relevant metrics. It also
highlights the challenges and limitations of image forgery
detection, including the need for a comprehensive approach that combines multiple techniques and the potential for new and advanced tampering techniques. Our review concludes with a discussion of future directions and potential research areas in image forgery detection, including the use of emerging technologies such as machine learning and blockchain. Overall, our review provides a comprehensive overview of the current state of the art in image forgery detection and highlights the need for continued research and development in this important field.
Keywords:
Image manipulation, Digital Forensics, Tampering detection, Splicing detection, image water marking, copy-move forgeryPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Amal P Varghese, Simy Mary Kurian, Advancements in ECG Heartbeat Classification: A Comprehensive Review of Deep Learning Approaches and Imbalanced Data Solutions , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- M Manoj, A S Athira, Rishna Ramesh, Sandhra Gopi, Firoz P U, Smart Attend Insights , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Manju Susan Thomas, Juby Mathew, The Integration of Trustworthy AI Values: A Comprehensive Model for Governance, Risk, and Compliance in Audit Architecture Framework context , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Fabeela Ali Rawther, Akhil P Dominic, Alan James, Christy Chacko, Elena Maria Varghese, Early Detection of Attention Deficiency Using ML , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- M Sreedharsh, S Saurav, Albin Joseph, Sravan Chandran , Lida K Kuriakose, Childhood Epilepsy Syndrome Classification through a Deep Learning Network with Clinical History Integration , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Sandra Raju, Dr S Sruthy, A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Manna Mariam Abraham, Naveen Moncy Mathew , Richu Sakeer Hussain, Tima Jose Thachara , Bibin Varghese, Wild Watch Sentry , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dipjyoti Deka, Rituparna Seal, Shubham Banik, Unmasking Fraudulent Job Ads: A Critical Review of Machine Learning Techniques for Detecting Fake Jobs , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- P Sathya Narayan, Safad Ismail, Developing an Empathetic Interaction Model for Elderly in Pandemics , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr. S. Perumal Sankar, P K Renjith, Ahammed Suhail P.I, Aswathy P S, Nithya Mary K J , Sharon K J, iAssist – An Intelligent Reading Assistant for Visually Impaired , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.
