The Carbon footprint of Machine Learning Models
Abstract
Machine Learning models are growing increasingly powerful in their abilities, whether that might be in processing natural language, tackling the intricacies of computer vision or any other number of exciting application that are emerging . But the environmental impact of machine learning models is increasingly receiving attentions. Here ,the works to focus on the carbon footprint of language models, as these models grow larger and larger, do their corresponding carbon footprints, especially when it comes to creating and training complex models. Here we will take a look at some concrete example of carbon emissions from machine learning models, will present tools that can be used to estimate the carbon footprint of a machine learning models. Finally present ideas for how to reduce the carbon footprint.
Keywords:
machine learning models, Carbon footprintsPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Jyothis Joseph, Angeetha Raju, Aparna Santhosh, Ashitha Jenish, K S Minu, Survey on Fake Profile Detection in Social Media , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Betzy Babu Thoppil, Anugrah Premachandran, Annapoorna M, Ashwin Mathew Zachariah, Bala Susan Jacob, Advanced Sensor-Based Landslide and Earthquake Detection and Alert System Utilizing Machine Learning and Computer Vision Technologies , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Lis Jose , Achyuth P Murali, Christin Joseph Shaji, Christy Kunjumon Peter , Multiple Detection and Diagnosis of Skin Diseases using CNN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Arya Raj S, R Gopika Krishnan, Drishya Das, Rohith R, Jocelyn Ann Joseph, Personality Profiling Using CV Analysis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Goutham P Raj, Gregan George, Hadii Hasan, John Ashwin Delmon, V Pradeeba, COMPREHENSIVE VEHICLE SERVICES & E-COMMERCE PLATFORM WITH PRICE PREDICTION USING ML , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Ryan Leo , Mathews P Jose, Eirene Nikky , Lloyd Micheal, Chinnu Edwin A , Controlling a Mini Game using a Brain-Computer Interface , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nighila Ashok, Adithya Ajith, Aparna Shaju, Arjuna Chandran V V, Fahmi Fathima T S, DeepScan : A Deepfake Video Detection System , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.