MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES
Abstract
Tomato, which is scientifically known as Solanum lycopersicum, is a widely cultivated plant in the nightshade family, Solanaceae. It is an important source of food, both fresh and in processed form, and is grown in many parts of the world. However, tomato plants are prone to various diseases, which can significantly reduce their yield and quality. Early detection and prediction of these diseases can help in timely treatment and management which can ultimately lead to higher crop productivity. Machine learning techniques have shown promise in detecting and predicting plant diseases. This approach can be used to improve the efficiency and effectiveness of tomato cultivation and can have a significant impact on the agricultural industry. The use of machine learning algorithms can increase the efficiency of tomato cultivation. In this study, we present a machine learning-based approach for the detection and prediction of tomato leaf diseases. We use a dataset of images of tomato leaves infected with different diseases such as tomato yellow curl virus,
bacterial spot, and late blight along with healthy leaves, to train a Random Forest model. The model is then tested on a separate dataset to evaluate its performance
Keywords:
Random forest, Feature Extraction, training data, testing data, tomato leaf disease detectionPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Aaron Samuel Mathew , Adhil P, Alan Siby, Alwyn Jospeh , Real Time Scheduling And Navigation Portal , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Manna Mariam Abraham, Naveen Moncy Mathew , Richu Sakeer Hussain, Tima Jose Thachara , Bibin Varghese, Wild Watch Sentry , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aniruddha Das, Avisikta Modak, The Carbon footprint of Machine Learning Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Akhil Shaji, Albin Joshy, M J Athulkrishna, Joel Biju, Bino Thomas, COLLEGE BUS SECURITY AND MANAGEMENT SYSTEM , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- K Sooraj, Yasim Khan M, A High Speed Low Power 10T SRAM with high Robustness , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Charukesh, Ethical Hacking using the Switch Port Analyser in a Enterprise Network , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anna N Kurian, Amitha Anil, Andriya Raju, Ancita J Feriah, Aiswarya Lakshmi Navami, Deep Learning based Multimodal Brain MRI Tumor Classification as a Diagnostic Tool to Benefit Clinical Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Anna Thomas, Esther Thankam Mathew, Anitta Emmanuel, Noel Thomas, Auxilia: Assistive Learning Tool for Children with Down Syndrome , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.