Pest Prediction in Rice using IoT and Feed Forward Neural Network
Abstract
Rice is a cereal grain, and in its domesticated
form is the staple food for over half of the world’s human
population. Rice is the seed of the grass species Oryza sativa
(Asian rice) or, much less commonly, O. glaberrima (African rice).
It is cooked by boiling, or it can be ground into flour. It is
eaten alone and in a great variety of soups, side dishes, and
main dishes in Asian, Middle Eastern, and many other cuisines.
Other products in which rice is used are breakfast cereals,
noodles, and such alcoholic beverages as Japanese sake. Rice has
become commonplace in many cultures worldwide; in 2021, 787
million tons were produced, placing it fourth after sugarcane,
maize, and wheat. Stem borers are moths that attack rice crops.
Sam Kattiveettil James
Dept. of Computer Sscience
Amal Jyothi College of Engineering
Kanjirapally, Kerala, India
samkattiveettiljames2024@cs.ajce.in
striped stemborer, gold-fringed stemborer, dark-headed striped
stemborer, and the pink stemborer.
They feed upon tillers and causes deadhearts or drying of the
central tiller, during vegetative stage and causes whiteheads at
reproductive stage. Environmental factors such as relative
humidity, rainfall, and temperature can influence the growth of
stem borers in rice fields. This study aims to identify specific
changes in environmental conditions, such as temperature,
humidity, and rainfall, that may trigger outbreaks of stem borers.
By pinpointing these factors, the study aids in identifying hotspots
of insect pests in rice fields and provides insights for farmers. Our
proposed system is a machine learning model which takes in data
from temperature, humidity and rainfall sensors in fields and uses
it to make predictions, whether pest attack will occur or not, so
that necessary precautions can be taken.
Keywords:
deep learning, FNN, pest prediction, Field PlantPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- K.M Gishma, K.B Annmaria , V.N Ramna Parvan , Anagha Suresh, Athira Shaji, LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Lis Jose , Achyuth P Murali, Christin Joseph Shaji, Christy Kunjumon Peter , Multiple Detection and Diagnosis of Skin Diseases using CNN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Honey Joseph, A Survey and Analysis on Predicting Heart Disease Using Machine Learning Techniques , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amala Jayan, Feneesha V B, Rameesa Dilsa C P, Sandra Maryam Binu, Sandra Maryam Binu, Stockwise: A survey on stock price prediction models , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Sandra Saji, Melbin Mathew, Angel Mariya S, Amrutha Mugesh, Jincy Lukose, MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Mrs. Lis Jose, Akhil Lorence, Akhil Manohar, Amal Jose Chacko, Arjun J, Lung Disease Detection From Chest X-ray Images Using Hybrid Machine Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Arun Robin, Tijo Thomas Titus, Ms. Minu Cherian, Improved Handwritten Digit Recognition Using Deep Learning Technique , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
You may also start an advanced similarity search for this article.