Pest Prediction in Rice using IoT and Feed Forward Neural Network
Abstract
Rice is a cereal grain, and in its domesticated
form is the staple food for over half of the world’s human
population. Rice is the seed of the grass species Oryza sativa
(Asian rice) or, much less commonly, O. glaberrima (African rice).
It is cooked by boiling, or it can be ground into flour. It is
eaten alone and in a great variety of soups, side dishes, and
main dishes in Asian, Middle Eastern, and many other cuisines.
Other products in which rice is used are breakfast cereals,
noodles, and such alcoholic beverages as Japanese sake. Rice has
become commonplace in many cultures worldwide; in 2021, 787
million tons were produced, placing it fourth after sugarcane,
maize, and wheat. Stem borers are moths that attack rice crops.
Sam Kattiveettil James
Dept. of Computer Sscience
Amal Jyothi College of Engineering
Kanjirapally, Kerala, India
samkattiveettiljames2024@cs.ajce.in
striped stemborer, gold-fringed stemborer, dark-headed striped
stemborer, and the pink stemborer.
They feed upon tillers and causes deadhearts or drying of the
central tiller, during vegetative stage and causes whiteheads at
reproductive stage. Environmental factors such as relative
humidity, rainfall, and temperature can influence the growth of
stem borers in rice fields. This study aims to identify specific
changes in environmental conditions, such as temperature,
humidity, and rainfall, that may trigger outbreaks of stem borers.
By pinpointing these factors, the study aids in identifying hotspots
of insect pests in rice fields and provides insights for farmers. Our
proposed system is a machine learning model which takes in data
from temperature, humidity and rainfall sensors in fields and uses
it to make predictions, whether pest attack will occur or not, so
that necessary precautions can be taken.
Keywords:
deep learning, FNN, pest prediction, Field PlantPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Arun Robin, Tijo Thomas Titus, Ms. Minu Cherian, Improved Handwritten Digit Recognition Using Deep Learning Technique , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Syam Gopi, Evelyn Susan Jacob, Joel John, Raynell Rajeev, Steve Alex, Survey on AI Malware Detection Methods and Cybersecurity Education , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Adams Mathew, Adithya Sanil, Akhil J Medackal, Nikhil J Medackal, Dyni Thomas, A Literature Review on IMAGE FORGERY DETECTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Prinu Vinod Nair, Rohit Subash Nair, Samuel Thomas Mathew S, Ansamol Varghese, Weed detection using YOLOv3 and elimination using organic weedicides with Live feed on Web App , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Asha Joseph, Deep Learning for Cyber Threat Detection , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Mekha Jose, Jocelyn Anthony, Jose V Joseph, Joshwa Thomas, Sharon Baby Thomas, A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Dr. Indu John, A Adithya, Alwin Rajan, Amal Biso George, Farhaan M Hussain, HEALTH GUARD-A Multiple Disease Prediction Model Based on Machine learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Fabeela Ali Rawther, Abhinay A K, Anagha Tess B, Alan Joseph, Adham Saheer, Survey of Machine Learning and Deep Learning Approaches for Automated Hate Speech Detection and Sentiment Analysis in Multilingual Contexts , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.