HEALTH GUARD-A Multiple Disease Prediction Model Based on Machine learning
Abstract
The aim of the paper is to present a new approach
to predicting multiple lifestyle diseases such as diabetes and
heart disease using machine learning techniques. The proposed
approach is based on ensemble learning, genetic algorithm
based recursive feature elimination, and AdaBoost. The data is
preprocessed using the Multiple Imputation by Chained Equa
tions (MICE) technique to handle missing data. This technique
is used to impute missing values in the dataset by creating
multiple imputations and then combining them to create a final
dataset. The proposed approach also uses genetic algorithm-based
recursive feature elimination to determine the optimal feature
subset. This technique uses a genetic algorithm to iteratively
remove features from the dataset until the optimal subset is
found. The AdaBoost classification model is trained alongside
other predictive models for multi-disease prediction. AdaBoost is
an ensemble learning technique that combines mul- tiple weak
classifiers to create a strong classifier. An extensive comparative
study has been conducted to evaluate the effectiveness of the
proposed model. The results show that the proposed methodology
outperforms existing works in terms of prediction accuracy,
precision, and recall. Overall, this study demonstrates the effec
tiveness of ensemble learning and genetic algorithm-based feature
selection in predicting multiple diseases. The proposed approach
has the potential to improve disease prediction accuracy and help
healthcare professionals make more informed decisions.
Keywords:
AdaBoost, Machine learningPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Asha Joseph, Deep Learning for Cyber Threat Detection , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Honey Joseph, A Survey and Analysis on Predicting Heart Disease Using Machine Learning Techniques , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Aniruddha Das, Avisikta Modak, The Carbon footprint of Machine Learning Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Mekha Jose, Jocelyn Anthony, Jose V Joseph, Joshwa Thomas, Sharon Baby Thomas, A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Honey Joseph, Aaron M Vinod, Abin Mathew varghese, Aby Alex, Aleena Sain, Crop Yield Prediction Using ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Jefrin Siby Mathew, Joyal Joseph, Roshik George, Tinu Rose Thottungal , Honey Joseph, Multiple Disease Detection using Machine Learning , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Fabeela Ali Rawther, Abhinay A K, Anagha Tess B, Alan Joseph, Adham Saheer, Survey of Machine Learning and Deep Learning Approaches for Automated Hate Speech Detection and Sentiment Analysis in Multilingual Contexts , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Ansamol Varghese, Anandhu Anoj, Emil Thomas, Deepta K Sunny, Angel Thomas, TrueNews: AI Powered Detection of Manipulated Text and Images , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Dipjyoti Deka, Rituparna Seal, Shubham Banik, Unmasking Fraudulent Job Ads: A Critical Review of Machine Learning Techniques for Detecting Fake Jobs , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.