Lung Disease Detection From Chest X-ray Images Using Hybrid Machine Learning Model
Abstract
Lots of people die due to lung diseases in India alone.
The human lungs is a complicated system where different disease
occur at different parts of this system. Some diseases, such as
asthma, affect the airways of the lungs causing inflammation
which results in shortness of breath. Diseases such as pneumonia,
tuberculosis, and lung cancer affect the air sacs inside the lungs,
which are called alveoli. The Covid-19 corona virus has
significantly disrupted the global economy, culture, and health
systems. Since the corona virus usually first causes symptoms
in the lungs of patients, chest X-ray images can be useful in
accurately diagnosing a patient.The rapid advancement in deep
learning techniques has significantly impacted the field of medical
imaging, particularly in diagnosing lung diseases. The proposed
system aims to develop a hybrid machine learning model using
InceptionV3 and DenseNet for the detection of lung diseases from
chest X-ray images. Our work highlights the potential of machine
learning models in automating the detection of lung diseases,
providing insights into their comparative strengths and suggesting
new pathways for future research
Keywords:
DenseNet, InceptionV3, Deep learningPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Lis Jose , Achyuth P Murali, Christin Joseph Shaji, Christy Kunjumon Peter , Multiple Detection and Diagnosis of Skin Diseases using CNN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dona S Plavelil, A Devanandha, Haritha H Kurupp, Jissin k Jose, DETECTION OF ALZHEIMER’S DISEASE AND ASSISTANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Asha Joseph, Deep Learning for Cyber Threat Detection , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Mekha Jose, Jocelyn Anthony, Jose V Joseph, Joshwa Thomas, Sharon Baby Thomas, A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- K.M Gishma, K.B Annmaria , V.N Ramna Parvan , Anagha Suresh, Athira Shaji, LIP READING AND PREDICTION SYSTEM BASED ON DEEP LEARNING , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- M Manoj, A S Athira, Rishna Ramesh, Sandhra Gopi, Firoz P U, Smart Attend Insights , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Fabeela Ali Rawther, Abhinay A K, Anagha Tess B, Alan Joseph, Adham Saheer, Survey of Machine Learning and Deep Learning Approaches for Automated Hate Speech Detection and Sentiment Analysis in Multilingual Contexts , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.