Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning
Abstract
Hydroponics is the soil-less agriculture farming, which consumes less water and other resources as compared to the traditional soil-based agriculture systems. However, mon- itoring hydroponics farming is a challenging task due to the simultaneous supervising of numerous parameters and plant diagnosis system. Therefore, this article focuses on the imple- mentation of web application integrated machine learning-based smart hydroponics expert system. The proposed project with IoT consists of three phases, where the first phase implements hardware environment equipped with real-time sensors such as pH, temperature, water level, and camera module which are con- trolled by Raspberry Pi processor. The second phase implements the CNN Model for plant disease detection and classification and the system includes a chat bot for user interaction, addressing plant-related questions and providing details about any detected diseases. In the third phase, farmers can monitor the real-time sensor data using AWS TwinMaker and plant leaf disease status using an web-based application. In this manner, the farmer can continuously track the status of his field using the mobile app. Through this innovative approach, hydroponic farming can become more efficient, sustainable, and ultimately contribute to addressing global food security challenges.
Keywords:
Digital Twin, CNN, Raspberry PiPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Abhijith J, Athul Krishna S, Amarthyag P, Angela Rose Baby, Mekha Jose, CATARACT DETECTION USING DIGITAL CAMERA IMAGES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Prinu Vinod Nair, Rohit Subash Nair, Samuel Thomas Mathew S, Ansamol Varghese, Weed detection using YOLOv3 and elimination using organic weedicides with Live feed on Web App , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Ansamol Varghese, Anandhu Anoj, Emil Thomas, Deepta K Sunny, Angel Thomas, TrueNews: AI Powered Detection of Manipulated Text and Images , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Mekha Jose, Jocelyn Anthony, Jose V Joseph, Joshwa Thomas, Sharon Baby Thomas, A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Lis Jose , Achyuth P Murali, Christin Joseph Shaji, Christy Kunjumon Peter , Multiple Detection and Diagnosis of Skin Diseases using CNN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Akhil Mathew Mohan, Alan Maria George, Arathy Baby, Gopika S, Syam Gopi, Abubeker K.M, Real-time Air Quality Index Monitoring and Alert System using IoT Technology , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Adams Mathew, Adithya Sanil, Akhil J Medackal, Nikhil J Medackal, Dyni Thomas, A Literature Review on IMAGE FORGERY DETECTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.