Real-time Air Quality Index Monitoring and Alert System using IoT Technology
Abstract
Air pollution is one of the biggest problems of our time because it not only contributes to climate change but also has a negative influence on public and individual health, which raises morbidity and mortality rates. The general comfort and health of a building's occupants are significantly influenced by the indoor air quality (IAQ). Numerous detrimental health outcomes, such as allergies, headaches, and respiratory issues, can be brought on by poor IAQ. An IoT-based indoor air quality monitoring system can be used to solve this problem. We suggest a three-phase air pollution monitoring system to address the issues with current systems. With the help of gas sensors and a Raspberry Pi 4, an IoT kit was created. This device can actually be put into different rooms to monitor air pollution. The gas sensors collect information from the atmosphere and transmit it to the Raspberry Pi 4. The Wi-Fi module on the raspberry pi4 sends the data to the cloud. Users can get pertinent cloud-based air quality data via an android app that has been built. In order to efficiently monitor air quality and foresee the negative effects that prolonged exposure to these pollutants may have, our project aims to develop a real-time air monitoring system.
Keywords:
sensors, raspberry pi, thinkspeak, IAQ, Air Quality, real time monitoringPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Athira Sankar, Sajishma S R, Alan Raj, Vaishnavi A K, Reshmi S Kaimal, Hydro Sense: Empowering Water Quality Monitoring Through IoT And ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Amrutha Priya C B, Nitha C Velayudhan, Arjun K S, Aleena Francis, Divya P S, AI Enabled Robot for Data Collection in Unreachable and Extreme Environment , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Juby Mathew, Maria Jojo, Neha Ann Samson, Noell Biju Michael, Ron T Alumkal, PulseSync: IoT-Enabled Monitoring and Predictive Analytics for Healthcare , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Betzy Babu Thoppil, Anugrah Premachandran, Annapoorna M, Ashwin Mathew Zachariah, Bala Susan Jacob, Advanced Sensor-Based Landslide and Earthquake Detection and Alert System Utilizing Machine Learning and Computer Vision Technologies , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Leo Jose, Navin Shibu George, Raju, Safa Haroon, Bini M Issac, Wearable Technology for Driver Monitoring and Health Management: A Comprehensive Survey , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Kaveri S, Pooja Satheesh, Kesiya Susan John, Reubel K Wilson, Dr. Jacob John, Predictive Maintenance of Machines Using IoT and Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Prof. Manoj T Joy, Noel Shaji, Sharon Sunil, Thomas Johanson, Ridhin Joseph, IoT-Based Smart Aquaponics System with Remote Monitoring and Actuator Control , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Melvin Tom Varghese, Joseph V S, Kevin Chacko, Johns Benny, Tintu Alphonsa Thomas, Crop Recommendation System using Machine Learning and IoT , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aadithya Hari Nair, Adithi R Kumar, Aleena Thomas, Jeffy Shiju, Tom Kurian, Dynamic Traffic Light Control: A Novel Approach for Congestion Mitigation and Traffic Optimization , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.