Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning
Abstract
Hydroponics is the soil-less agriculture farming, which consumes less water and other resources as compared to the traditional soil-based agriculture systems. However, mon- itoring hydroponics farming is a challenging task due to the simultaneous supervising of numerous parameters and plant diagnosis system. Therefore, this article focuses on the imple- mentation of web application integrated machine learning-based smart hydroponics expert system. The proposed project with IoT consists of three phases, where the first phase implements hardware environment equipped with real-time sensors such as pH, temperature, water level, and camera module which are con- trolled by Raspberry Pi processor. The second phase implements the CNN Model for plant disease detection and classification and the system includes a chat bot for user interaction, addressing plant-related questions and providing details about any detected diseases. In the third phase, farmers can monitor the real-time sensor data using AWS TwinMaker and plant leaf disease status using an web-based application. In this manner, the farmer can continuously track the status of his field using the mobile app. Through this innovative approach, hydroponic farming can become more efficient, sustainable, and ultimately contribute to addressing global food security challenges.
Keywords:
Digital Twin, CNN, Raspberry PiPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Aleena Joseph, Diya Paramesh G, Elza Mary Thomas, Gayathri V, Anu V Kottath, A Review on Comparison of VGG-16 and DenseNet algorithms for analysing brain tumor in MRI image , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Akil Saji, Sreeyuktha Ramesh, Aabel Jacob, Saumya Sadanadan, Rosmartina Shaju, Dr S N Kumar, Enhancing Image Security with Introduction to Blockchain , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Syam Gopi, Evelyn Susan Jacob, Joel John, Raynell Rajeev, Steve Alex, Survey on AI Malware Detection Methods and Cybersecurity Education , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- M Midhun, Sangeetha Tony, Tibin Abraham, B Vyshnav, ACCIDENT DETECTION USING VIDEO SURVEILLANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Aadithya Hari Nair, Adithi R Kumar, Aleena Thomas, Jeffy Shiju, Tom Kurian, Dynamic Traffic Light Control: A Novel Approach for Congestion Mitigation and Traffic Optimization , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- V Amarjith, Anaswara Anil, Anju Viswam, KM Aravind, Multilingual Hardcoded Subtitle Extractor , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr. S. Perumal Sankar, P K Renjith, Ahammed Suhail P.I, Aswathy P S, Nithya Mary K J , Sharon K J, iAssist – An Intelligent Reading Assistant for Visually Impaired , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Naveen Philip Abraham, Joppen George, Kevin Sajan, Jonathan Chandy, Jonathan Chandy, Bini M. Issac, Advancements in Assistive Technologies: Enhancing Independence and Accessibility for the Visually Impaired , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.