Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning
Abstract
Hydroponics is the soil-less agriculture farming, which consumes less water and other resources as compared to the traditional soil-based agriculture systems. However, mon- itoring hydroponics farming is a challenging task due to the simultaneous supervising of numerous parameters and plant diagnosis system. Therefore, this article focuses on the imple- mentation of web application integrated machine learning-based smart hydroponics expert system. The proposed project with IoT consists of three phases, where the first phase implements hardware environment equipped with real-time sensors such as pH, temperature, water level, and camera module which are con- trolled by Raspberry Pi processor. The second phase implements the CNN Model for plant disease detection and classification and the system includes a chat bot for user interaction, addressing plant-related questions and providing details about any detected diseases. In the third phase, farmers can monitor the real-time sensor data using AWS TwinMaker and plant leaf disease status using an web-based application. In this manner, the farmer can continuously track the status of his field using the mobile app. Through this innovative approach, hydroponic farming can become more efficient, sustainable, and ultimately contribute to addressing global food security challenges.
Keywords:
Digital Twin, CNN, Raspberry PiPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- V Amarjith, Anaswara Anil, Anju Viswam, KM Aravind, Multilingual Hardcoded Subtitle Extractor , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Manju Susan Thomas, Juby Mathew, The Integration of Trustworthy AI Values: A Comprehensive Model for Governance, Risk, and Compliance in Audit Architecture Framework context , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Muneebah Mohyiddeen, Sana T.H, Anoodh Hussain, Nandana P Narayanan, Sneha Soman, DGCURE: Model for Detection of Dysgraphia , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Sandra Raju, Dr S Sruthy, A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Khalid Hareef, Neenu, M N Sulthana , Nesmi Siddique, Number Plate Detection in Fog and Haze , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Rema M K, Muhamed Ajmal K R, Deepak T G, Roshini M, Muhammed Bazir, INTERACTIVE TOY , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Richa Maria Biju, Merwin Maria Antony, Mishal Rose Thankachan, Joshua John Sajit, Bini M Issac, Enhancing Image Forgery Detection with Multi-Modal Deep Learning and Statistical Methods , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.