DGCURE: Model for Detection of Dysgraphia
Abstract
Leaming disability is a condition that includes a direct impact on the brain and there's no remedy or any distinguished restorative medicines. Children with learning disability have inconvenience with learning compared to their individual peers and quite regularly fall back academically since a larger part of them go undiscovered. Dysgraphia, which is known as a writing disorder, is a particular disorder of writing with respect to the propagation of in sequential order and numerical signs. Since the causes of dysgraphia are obscure, the early detection of dysgraphia is exceptionally vital. This paper points to analyze children with Dysgraphia, classify them based on type and give them with corresponding treatments. This can be fundamentally done by examining the writing dynamics of children. Deep learning techniques are used in the screening process of these specific learning disabilities. Trained convolutional neural networks are used to detect and extract various properties of handwriting and outputs from the convolutional neural network are fed into the models used for screening the disabilities
Keywords:
Dysgraphia, Image pre-processing, CNNPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Aleena Joseph, Diya Paramesh G, Elza Mary Thomas, Gayathri V, Anu V Kottath, A Review on Comparison of VGG-16 and DenseNet algorithms for analysing brain tumor in MRI image , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Sebastian Biju, Samuel Michael, Thomas Mathew Jose, Mathew Abraham, Minu Cherian, A Review of Machine Learning Approaches for Canine Skin Disease Detection Using Image Processing Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Mekha Jose, Jocelyn Anthony, Jose V Joseph, Joshwa Thomas, Sharon Baby Thomas, A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- George P Kurias, Gokul Krishna AU, Jifith Joseph, Sharunmon R, Linsa Mathew, A Review of Methodologies for Detecting Missing and Wanted People Using Machine Learning and Video Surveillance , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Asha Joseph, Deep Learning for Cyber Threat Detection , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Lis Jose , Achyuth P Murali, Christin Joseph Shaji, Christy Kunjumon Peter , Multiple Detection and Diagnosis of Skin Diseases using CNN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.