Enhancing Image Forgery Detection with Multi-Modal Deep Learning and Statistical Methods
Abstract
The manipulation of digital images from journalism to social media and in forensics has made detection of image forgery a significant area of research. Techniques for forgery detection are generally classified into three categories: splicing, copy-move, and retouching. The mainstay of the classic methods is handcrafted features which range from resampling artefacts to edge inconsistencies and finally DCT coefficients that point towards anomalies. However, with deep learning, this domain has totally transformed: it is possible to learn complex patterns straight from pixel data to get even more sophisticated detec- tion. Modern approaches rely on convolutional neural networks (CNNs) and prefabricated architectures such as ResNet50 and VGG16 to embrace both global and local inconsistency in images. Hybrid models combining the capabilities from deep learning and statistical methods have also been found to perform better than others. With all these advances, however, several problems still exist. It is challenging to produce subtle forgeries that survive most post-processing procedures, such as compression and resizing. More generalizable models, along with the designs they are intended to build upon, should be developed for the detection of various kinds of forgeries in diverse image datasets and reflect real challenges in diverse real-world scenarios.
Keywords:
hybrid models, handcrafted features, DCT coefficients, VGG16, ResNet50, convolutional neural networks (CNNs), deep learning, copy- move forgery, splicing forgery, Image forgery detectionPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Asha Joseph, Deep Learning for Cyber Threat Detection , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Syam Gopi, Evelyn Susan Jacob, Joel John, Raynell Rajeev, Steve Alex, Survey on AI Malware Detection Methods and Cybersecurity Education , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Lis Jose , Achyuth P Murali, Christin Joseph Shaji, Christy Kunjumon Peter , Multiple Detection and Diagnosis of Skin Diseases using CNN , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nikita Niteen , Juby Mathew, Securing AI: Understanding and Defending Against Adversarial Attacks in Deep Learning Systems , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Fabeela Ali Rawther, Abhinay A K, Anagha Tess B, Alan Joseph, Adham Saheer, Survey of Machine Learning and Deep Learning Approaches for Automated Hate Speech Detection and Sentiment Analysis in Multilingual Contexts , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Adams Mathew, Adithya Sanil, Akhil J Medackal, Nikhil J Medackal, Dyni Thomas, A Literature Review on IMAGE FORGERY DETECTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Mekha Jose, Avin Joshy, Abishek R Paleri, Athul Mohan, Ali Jasim R M, A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.