Comparative Analysis of Text Classification Models for Offensive Language Detection on Social Media Platforms
Abstract
The detection of offensive language in text has
become increasingly crucial in various social media platforms
to maintain a respectful and safe environment. In this
research we study and present a comparative analysis of
different text classification models for identifying offensive
and non-offensive language. Specifically, we investigate the
performance of Support Vector Classifier (SVC), Compliment
model, Gaussian model, and Multinomial model on a dataset
curated for this purpose. Each text classification model is
implemented and trained using the preprocessed dataset, and
their performance is evaluated using standard evaluation
metrics such as accuracy. The experimental results display the
effectiveness of each model in distinguishing offensive
language from non-offensive language. This research
contributes to the literature by providing empirical evidence
on the performance of various text classification models for
offensive language detection, thus aiding in the development
of more robust and accurate detection systems for online
platforms.
Keywords:
Textclassification, Offensive language, detection, Support Vector Classifier (SVC), Compliment model, Gaussianmode, Multinomial model, Social media platforms, Empirical analysis, Performance evaluation, Online content moderationPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Nivedh Mohanan, Subhash P C, Subin K S, Subin V Ninan, Elisabeth Thomas, S N Kumar, A Qualitative Study on Segmentation of MR Images of Brain for Neuro Disorder Analysis , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anna N Kurian, Amitha Anil, Andriya Raju, Ancita J Feriah, Aiswarya Lakshmi Navami, Deep Learning based Multimodal Brain MRI Tumor Classification as a Diagnostic Tool to Benefit Clinical Applications , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Parvathy S Kurup, Pranav P Nair, Sai Kishor, Aryan S Nair, Pranav P, Face Image Synthesis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr. S. Perumal Sankar, P K Renjith, Ahammed Suhail P.I, Aswathy P S, Nithya Mary K J , Sharon K J, iAssist – An Intelligent Reading Assistant for Visually Impaired , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Sebin Thomas, John VG, Josin Chacko, Mariyam Shajahan, Sharon Sunny, PPT GENERATION FROM REPORT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amal P Varghese, Simy Mary Kurian, Advancements in ECG Heartbeat Classification: A Comprehensive Review of Deep Learning Approaches and Imbalanced Data Solutions , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- M Sreedharsh, S Saurav, Albin Joseph, Sravan Chandran , Lida K Kuriakose, Childhood Epilepsy Syndrome Classification through a Deep Learning Network with Clinical History Integration , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
You may also start an advanced similarity search for this article.