Comparative Analysis of Text Classification Models for Offensive Language Detection on Social Media Platforms
Abstract
The detection of offensive language in text has
become increasingly crucial in various social media platforms
to maintain a respectful and safe environment. In this
research we study and present a comparative analysis of
different text classification models for identifying offensive
and non-offensive language. Specifically, we investigate the
performance of Support Vector Classifier (SVC), Compliment
model, Gaussian model, and Multinomial model on a dataset
curated for this purpose. Each text classification model is
implemented and trained using the preprocessed dataset, and
their performance is evaluated using standard evaluation
metrics such as accuracy. The experimental results display the
effectiveness of each model in distinguishing offensive
language from non-offensive language. This research
contributes to the literature by providing empirical evidence
on the performance of various text classification models for
offensive language detection, thus aiding in the development
of more robust and accurate detection systems for online
platforms.
Keywords:
Textclassification, Offensive language, detection, Support Vector Classifier (SVC), Compliment model, Gaussianmode, Multinomial model, Social media platforms, Empirical analysis, Performance evaluation, Online content moderationPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- AbhilashV Pandiankal, Jacob Abraham, Human Immunity Gainer (HIG) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Niya Joseph, Tintu Alphonsa Thomas, A Systematic Review of Content-Based Image Retrieval Techniques , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tebin Joseph, Pranav Thamban Nair, Sam Kattiveettil James, Mrs Tintu Alphonsa Thomas , Pest Prediction in Rice using IoT and Feed Forward Neural Network , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aaron Samuel Mathew, Joel John, Exploring the Evolution of Software Engineering with Generative AI , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Tintu Alphonsa Thomas, Nandana Rajagopal, Neethu Liz Shaji, Silby Elza Simon, P Sree Parvathy, Survey on Video Summarization using Extracted Audio , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Manna Mariam Abraham, Naveen Moncy Mathew , Richu Sakeer Hussain, Tima Jose Thachara , Bibin Varghese, Wild Watch Sentry , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Naveen Philip Abraham, Joppen George, Kevin Sajan, Jonathan Chandy, Jonathan Chandy, Bini M. Issac, Advancements in Assistive Technologies: Enhancing Independence and Accessibility for the Visually Impaired , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nihal Anil, Ms. Nighila Abhish, Jesila Joy , Noora Sajil , P R Vishnuraj, Augmented Neat Algorithm For Enhanced Cognitive Interaction (NEAT-X) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Honey Thomas, Linna Benny, Saya Nezrin, Navya Neethi S, Niya Joseph, Smart Communication Software for the Hearing Impaired Using Artificial Intelligence , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.