Survey of Strabismus Detection Techniques
Abstract
Strabismus, or “crossed-eyes,” is one of the most
common ocular diseases. Strabismus has a serious impact on
human life. Patients with strabismus not only have visual but also
psychological and social effects from their condition. In adults, one
study showed that large-angle horizontal strabismus could affect
one’s ability to gain employment. This appeared to be more
important for women’s employability than men. These
psychosocial effects may be influenced by whether the degree of
ocular misalignment is detectable by those with whom they have
contact. If the strabismus is not detectable, presumably the
observers’ negative feelings for strabismus would not be invoked.
As a result, a timely strabismus screening becomes important and
essential for preventing strabismus. So far, there are multiple ways
to complete strabismus screening. Traditional strabismus
screening is conducted manually by ophthalmologists through
many tests, such as the cover and uncover test, prism cover test
and the Hirschberg test. The proposed method uses a frontal facial
image from a patient, and it measures the deviation of the
positional similarity of two eyes within the image, which aims to
provide ophthalmologists with interpretable information for the
diagnosis of strabismus.
Keywords:
Strabismus Detection, Convolutional Neural Network, K-Nearest Neighbors, Support Vector MachinePublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Mekha Jose, Jocelyn Anthony, Jose V Joseph, Joshwa Thomas, Sharon Baby Thomas, A Review of Machine Learning and Deep Learning Approaches for Offensive Text Detection , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Jefrin Siby Mathew, Joyal Joseph, Roshik George, Tinu Rose Thottungal , Honey Joseph, Multiple Disease Detection using Machine Learning , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Khalid Hareef, Neenu, M N Sulthana , Nesmi Siddique, Number Plate Detection in Fog and Haze , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Sinciya P.O, Aaron Varughese Bino, Anamin Fathima Anish, Aathira Krishna, Dona Maria Joseph, Unveiling Stress through Facial Expressions: A Literature Review on Detection Methods , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Mekha Jose, Avin Joshy, Abishek R Paleri, Athul Mohan, Ali Jasim R M, A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Muneebah Mohyiddeen, Sana T.H, Anoodh Hussain, Nandana P Narayanan, Sneha Soman, DGCURE: Model for Detection of Dysgraphia , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ansamol Varghese, Anoushkha Tresa, Athira John, Ignatious Ealias Roy, M S Gautham Sankar, A Machine Learning Approach to Fake News Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dipjyoti Deka, Rituparna Seal, Shubham Banik, Unmasking Fraudulent Job Ads: A Critical Review of Machine Learning Techniques for Detecting Fake Jobs , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.