Survey of Strabismus Detection Techniques
Abstract
Strabismus, or “crossed-eyes,” is one of the most
common ocular diseases. Strabismus has a serious impact on
human life. Patients with strabismus not only have visual but also
psychological and social effects from their condition. In adults, one
study showed that large-angle horizontal strabismus could affect
one’s ability to gain employment. This appeared to be more
important for women’s employability than men. These
psychosocial effects may be influenced by whether the degree of
ocular misalignment is detectable by those with whom they have
contact. If the strabismus is not detectable, presumably the
observers’ negative feelings for strabismus would not be invoked.
As a result, a timely strabismus screening becomes important and
essential for preventing strabismus. So far, there are multiple ways
to complete strabismus screening. Traditional strabismus
screening is conducted manually by ophthalmologists through
many tests, such as the cover and uncover test, prism cover test
and the Hirschberg test. The proposed method uses a frontal facial
image from a patient, and it measures the deviation of the
positional similarity of two eyes within the image, which aims to
provide ophthalmologists with interpretable information for the
diagnosis of strabismus.
Keywords:
Strabismus Detection, Convolutional Neural Network, K-Nearest Neighbors, Support Vector MachinePublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Honey Joseph, A Survey and Analysis on Predicting Heart Disease Using Machine Learning Techniques , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Prinu Vinod Nair, Rohit Subash Nair, Samuel Thomas Mathew S, Ansamol Varghese, Weed detection using YOLOv3 and elimination using organic weedicides with Live feed on Web App , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aniruddha Das, Avisikta Modak, The Carbon footprint of Machine Learning Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Charukesh, Ethical Hacking using the Switch Port Analyser in a Enterprise Network , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Honey Joseph, Aaron M Vinod, Abin Mathew varghese, Aby Alex, Aleena Sain, Crop Yield Prediction Using ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Nihal Anil, Ms. Nighila Abhish, Jesila Joy , Noora Sajil , P R Vishnuraj, Augmented Neat Algorithm For Enhanced Cognitive Interaction (NEAT-X) , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Adams Mathew, Adithya Sanil, Akhil J Medackal, Nikhil J Medackal, Dyni Thomas, A Literature Review on IMAGE FORGERY DETECTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Melvin Tom Varghese, Joseph V S, Kevin Chacko, Johns Benny, Tintu Alphonsa Thomas, Crop Recommendation System using Machine Learning and IoT , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dr. Indu John, A Adithya, Alwin Rajan, Amal Biso George, Farhaan M Hussain, HEALTH GUARD-A Multiple Disease Prediction Model Based on Machine learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aleena Joseph, Diya Paramesh G, Elza Mary Thomas, Gayathri V, Anu V Kottath, A Review on Comparison of VGG-16 and DenseNet algorithms for analysing brain tumor in MRI image , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.