Revolutionizing Football Management: A Data-Driven Approach with Random Forest Regressor
Abstract
In the context of football management, depending
solely on subjective evaluations and expert opinions can create
significant challenges in player selection and strategic planning,
potentially resulting in less-than-ideal outcomes. Relying solely
on human judgment can result in errors and inefficiencies,
limiting teams from reaching their full potential. Managers face
challenges in making objective tactical decisions and assessing
player suitability accurately. This highlights the necessity for a
datadriven paradigm shift in football management. Utilizing the
Random Forest Regressor, an advanced analytical method offers
a systematic and fact-based approach to decision-making. The
data for this study was collected exclusively from SOFIFA.com,
specifically focusing on Indian Super League (ISL) players. By
leveraging this method and the comprehensive dataset from
SOFIFA.com, teams can effectively analyze player attributes
and performance data, aiding in the identification of transfer
targets that align with both individual playing styles and team
requirements. This approach not only enhances tactical decision-
making efficiency but also improves overall strategy formulation.
Incorporating this cutting-edge algorithm empowers football
managers to make better decisions, optimize squad composition,
and ultimately elevate team performance on the field.
Keywords:
Player selection, strategic planning, Random Forest Regressor, transfer target, tactical decision-making, Indian Super League (ISL)Published
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Sandra Saji, Melbin Mathew, Angel Mariya S, Amrutha Mugesh, Jincy Lukose, MACHINE LEARNING FOR DETECTION AND PREDICTION OF TOMATO LEAF DISEASES , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Alan K George, Arpita Mary Mathew, Asin Mary Jacob, Elizabeth Antony, Shiney Thomas, Classification of Lung Cancer Subtypes Using Deep Learning Model , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Amina Manaf , Ance Maria Joseph , Angel Joy , Anjaly Anilkumar , K S Rekha, Driver Drowsiness Detection Using Python , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- R Karthika, Maria Toms, S R Aadrash, P U Prabath, InsightAI: Bridging Natural Language and Data Analytics , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- FATHIMA P.S, ANU ROSE JOY, ANSPIN TITUS, ANSU MARIUM SHIBU, ASNA AZEEZ, INDIAN SIGN LANGUAGE RECOGNITION USING YOLOV5 , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Betzy Babu Thoppil, Anugrah Premachandran, Annapoorna M, Ashwin Mathew Zachariah, Bala Susan Jacob, Advanced Sensor-Based Landslide and Earthquake Detection and Alert System Utilizing Machine Learning and Computer Vision Technologies , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Prof. Manoj T Joy, Noel Shaji, Sharon Sunil, Thomas Johanson, Ridhin Joseph, IoT-Based Smart Aquaponics System with Remote Monitoring and Actuator Control , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Albin Thomas Lalu, Resmara S, Alen A Thankachen, Sneha Priya Sebastian, Dany Jennez , Lirin Blesson, Kesia Sunny, Fault Detection of Transmission Lines Using Unmanned Aerial Vehicle (UAV) , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Prof.Pavitha P.P , S Abhinav, Abida P Vaidyan , B Parvathi, A Critical Evaluation on Line of Sight Based Data Transmission A Review , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Khalid Hareef, Neenu, M N Sulthana , Nesmi Siddique, Number Plate Detection in Fog and Haze , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.