Fault Detection of Transmission Lines Using Unmanned Aerial Vehicle (UAV)
Abstract
The power transmission system is an essential part of the modern infrastructure that enables the distribution of electricity from power generation plants to households and industries. Transmission lines are the backbone of the power transmission system, and their proper functioning is crucial for the uninterrupted supply of electricity. However, faults in transmission lines are a common occurrence, and their timely detection and repair are crucial to ensure the reliability and efficiency of the power system. Traditional methods of detecting faults in transmission lines are labor-intensive, time-consuming, and expensive. Hence, there is a need for an efficient and cost effective solution to detect faults in transmission lines.The system "Fault Detection of Transmission Line Using UAV" proposes a novel approach that leverages the potential of unmanned aerial vehicles (UAVs) to detect faults in transmission lines. The proposed system involves equipping a UAV with high resolution cameras and sensors to capture images and data of the transmission lines. The UAV flies over the transmission lines and captures images and data of the entire transmission line, including the insulators, towers, and conductors. The images and data captured by the UAV are then processed using computer vision and machine learning algorithms to detect any abnormalities or faults in the transmission lines. The proposed system has several advantages over traditional methods of
detecting faults in transmission lines. First, the use of UAVs eliminates the need for human intervention, making the process faster, safer, and less costly. Second, the high-resolution images and data captured by the UAV provide a more comprehensive view of the transmission lines, enabling the detection of even minor abnormalities or faults that may be missed by traditional methods. Third, the use of computer vision and machine learning algorithms makes the fault detection process more accurate and efficient, reducing the risk of false alarms and minimizing the time required for repair. The proposed system can be scaled up to cover a larger area, enabling the detection of faults in a timely and accurate manner, thereby reducing downtime and maintenance costs for transmission lines. Furthermore, the proposed system can also be used for preventive maintenance, identifying potential faults before they occur, and reducing the risk of unexpected downtime. Overall, the proposed system "Fault Detection of Transmission Line Using UAV" presents an innovative solution to a critical problem in the power transmission system, potentially making it more reliable, efficient, and sustainable.
Keywords:
Autonomous UAV, computer vision, FPGA, hardware acceleration, mm Wave radar, Power line, sensor Fusion, AI, CNN, Automatic Fault Detection, PowerlinesPublished
Issue
Section
License
Copyright (c) 2023 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Betzy Babu Thoppil, Anugrah Premachandran, Annapoorna M, Ashwin Mathew Zachariah, Bala Susan Jacob, Advanced Sensor-Based Landslide and Earthquake Detection and Alert System Utilizing Machine Learning and Computer Vision Technologies , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- M Midhun, Sangeetha Tony, Tibin Abraham, B Vyshnav, ACCIDENT DETECTION USING VIDEO SURVEILLANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Amrutha Priya C B, Nitha C Velayudhan, Arjun K S, Aleena Francis, Divya P S, AI Enabled Robot for Data Collection in Unreachable and Extreme Environment , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tom Kurian, Ektha P S, Chethana Raj T, Diona Joseph, Annu Mary Abraham, Intelligent Disease Prediction in Hydroponic Systems Using Machine Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Linsa Mathew, Brain Tumor Detection , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Mekha Jose, Avin Joshy, Abishek R Paleri, Athul Mohan, Ali Jasim R M, A Review on Contribution and Influence of Artificial Intelligence in Road Safety and Optimal Routing , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Abhijith J, Athul Krishna S, Amarthyag P, Angela Rose Baby, Mekha Jose, CATARACT DETECTION USING DIGITAL CAMERA IMAGES , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Parvathy V A, Irfana Parveen C A, Alisha K A, Reshma P R, Manu Krishna C P, Detection of Diabetic Retinopathy and Glaucoma using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Lida K Kuriakose, Overview of Lip Reading Methods: Issues, Current Developments, and Future Prospects , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.