Detection of Diabetic Retinopathy and Glaucoma using Deep Learning
Abstract
—Advancements in medical technology
continue to reshape the landscape of eye care,
particularly in the early detection and management of
diabetic retinopathy and glaucoma. This abstract
outlines a novel approach aimed at optimizing disease
identification and treatment through the integration of
deep learning models and cutting-edge image processing
techniques. Our primary goal is to enhance the accuracy
and efficiency of diagnosing these prevalent eye
conditions, which if left untreated, can lead to severe
vision impairment and even blindness. By harnessing
the power of advanced algorithms and image analysis
tools, this initiative aims to provide healthcare
professionals with a comprehensive platform for
proactive disease monitoring and personalized
treatment strategies. The proposed system will enable
the prediction of disease progression and outcomes,
facilitating timely interventions tailored to individual
patient needs. Through this proactive approach, we
anticipate a significant reduction in the societal and
economic burden associated with diabetic retinopathy
and glaucoma. This project is poised to revolutionize eye
healthcare by shifting the focus towards preventative
measures and individualized care plans. By empowering
clinicians with accurate predictive tools, we aim to
improve patient outcomes, minimize vision loss, and
ultimately transform the way these debilitating eye
diseases are managed and treated. The integration of
deep learning and image processing technologies
represents a critical step towards achieving these
ambitious healthcare goals.
Keywords:
medical technology, diabetic retinopathy, glaucoma, treatment optimization, proactive disease monitoring, disease progression, societal burden, individualized care plans, transformative healthcare, image processing technologiesPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Krishnendu B, Sreelakshmi A, Sumayya Maheen, Zameel Hassan, Honey Joseph, Chatbot-Enabled Symptom Assessment: Revolutionizing Disease Diagnosis and Patient Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Aleena Joseph, Diya Paramesh G, Elza Mary Thomas, Gayathri V, Anu V Kottath, A Review on Comparison of VGG-16 and DenseNet algorithms for analysing brain tumor in MRI image , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Ansamol Varghese, Milu Mary Jacob, Shilpa Mariam James, Reeba Rebecca Varghese, Vimal sajan George, A Review on Integrating IoT and Robotics for Improved Care , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Muhammed Saalim O.S, Fathima Parvin M.A, Albiya Hameed, Hiba Fathima T.S, Amritha Soloman, AGRISEN Precise irrigation System and Smart health monitoring system , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Leo Jose, Navin Shibu George, Raju, Safa Haroon, Bini M Issac, Wearable Technology for Driver Monitoring and Health Management: A Comprehensive Survey , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dona S Plavelil, A Devanandha, Haritha H Kurupp, Jissin k Jose, DETECTION OF ALZHEIMER’S DISEASE AND ASSISTANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Devika R Nilackal, Resmara S, Greeshma R, Griesh R, Joice P Abraham, Najma Najeeb, Shehanas K Salim, CARDAMOM PLANT DISEASE DETECTION USING ROBOT , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Juby Mathew, Maria Jojo, Neha Ann Samson, Noell Biju Michael, Ron T Alumkal, PulseSync: IoT-Enabled Monitoring and Predictive Analytics for Healthcare , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Elisabeth Thomas, Arjun Saji, Aswin M S, Augustine Salas, Emil Viju, A Comprehensive Review of Advancing Cattle Monitoring and Behavior Classification using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Jefrin Siby Mathew, Joyal Joseph, Roshik George, Tinu Rose Thottungal , Honey Joseph, Multiple Disease Detection using Machine Learning , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.