Hydro Sense: Empowering Water Quality Monitoring Through IoT And ML
Abstract
Clean water is an essential resource in sustaining
life, and ensuring the quality of drinking water is crucial for
promoting the wellbeing and health of individuals. Water
quality monitoring systems are essential for evaluating and
guaranteeing the safety of water sources. The current water
quality surveillance system lacks real-time information, which
is a drawback. Manually checking water quality continuously
is impractical. To address this issue, we have developed a
cost-effective live-stream water quality monitoring system
specifically for consumable water. Key factors such as
turbidity, Ph and temperature need to be measured to detect
contaminants and prevent water-related illnesses. Our system
includes specially designed sensors connected to a
microcontroller with an integrated ADC circuit for signal
conversion, data processing, and analysis. The hardware
component is connected to the main system via a USB cable.
The system displays the values of each parameters in the Blynk
console and when values are manually given to the trained
model it will predict if the water is in consumable form or not.
We have trained the model using the Random Forest
classification Algorithm to predict if the water is consumable
or not.
Keywords:
pH sensor, turbidity sensor, temperature sensor, ESP32, machine learning, Random Forest classification AlgorithmPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Adhil Salim, Advaith Manoj, Alan Thomas Shaji, The Future of Encryption in the Face of Advancing Quantum Computing Technology , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Syam Gopi, Evelyn Susan Jacob, Joel John, Raynell Rajeev, Steve Alex, Survey on AI Malware Detection Methods and Cybersecurity Education , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
- Arun Robin, Tijo Thomas Titus, Ms. Minu Cherian, Improved Handwritten Digit Recognition Using Deep Learning Technique , International Journal on Emerging Research Areas: Vol. 3 No. 2 (2023): IJERA
- Parvathy V A, Irfana Parveen C A, Alisha K A, Reshma P R, Manu Krishna C P, Detection of Diabetic Retinopathy and Glaucoma using Deep Learning , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Dona S Plavelil, A Devanandha, Haritha H Kurupp, Jissin k Jose, DETECTION OF ALZHEIMER’S DISEASE AND ASSISTANCE , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Dr.Sinciya P.O , Ameena Ismail, Christin Abu, Don P Mathew, Gokul Krishnan G , Enhancing LSD Image Classification Techniques A Literature Review on Classification Techniques , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Meenu Harikumar, Navya Sajeev, Sayoojya Saji, Sona Sunny, Prof.Thushara Sukumar, COMPARATIVE SYSTEM OF PRIVACY PRESERVING IMAGE BASED ENCRYPTION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Tintu Alphonsa Thomas, Anishamol Abraham, CNN model to classify visually similar Images , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Jane George, A study on Multiple-Instance GPU, Evolution, Architecture and Applications , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Shiney Thomas, Elsa George, Alphonsa Francis, Anna Job, Ann Maria James, Wildlife Detection And Recognition Using YOLO V8 , International Journal on Emerging Research Areas: Vol. 4 No. 2 (2024): IJERA
You may also start an advanced similarity search for this article.