A REVIEW OF LOAD ESTIMATION AND DISTRIBUTION STRATEGY FOR RENEWABLE ENERGY SOURCES
Abstract
The remarkable increase in per capita power
consumption worldwide has drawn attention towards the
needed growth in renewable energy sector in order to
bridge the gap between overall demand and supply. In this
project various renewable energy sources like solar, wind
and hydro energy are taken into consideration for the load
estimation. Several factors are considered for the making
of dataset related to each energy source which include
environmental factors as well as other supporting factors.
With the collected data, prediction of energy generation is
performed using the machine learning algorithm, Random
Forest. The generation, transmission and distribution of
the energy is achieved through a power grid system which
enables efficient and reliable supply of electrical power
from power plants to various consumers.
Bidding mechanisms are commonly used in renewable
energy markets to allocate and trade energy generated
from renewable sources. Producers, such as solar farms or
wind power facilities, participate in bidding processes to
sell their energy to different distribution centres through
grid. Bids may include details like the quantity of energy,
pricing, and timing of delivery
Keywords:
Renewable energy integration, machine learning algorithms, power spot market bidding, block chain-based energy market, solar energy profilesPublished
Issue
Section
License
Copyright (c) 2024 International Journal on Emerging Research Areas

This work is licensed under a Creative Commons Attribution 4.0 International License.
All published work in this journal is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
How to Cite
Similar Articles
- Parvathy S Kurup, Pranav P Nair, Sai Kishor, Aryan S Nair, Pranav P, Face Image Synthesis , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Anishamol Abraham, Niya Joseph, State-of-the-Art Techniques for Image Forgery Detection: A Review , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Rosamma Sebastian, Devika V Shaji, Brijesh Emmanuel , Jack Jim, A Review Paper On Microstrip Patch Antenna , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Anu Rose Joy, An overview of Fake News DetectionusingBidirectional Long Short-TermMemory(BiLSTM)Models , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Sandra Raju, Dr S Sruthy, A Reliable Method for Detecting Brain Tumors in Magnetic Resonance Images Utilizing EfficientNet , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Manjima M A, Soumya Anand, Partial Replacement of bitumen by Plant Polymer Lignin in Bituminous Pavement , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- FATHIMA P.S, ANU ROSE JOY, ANSPIN TITUS, ANSU MARIUM SHIBU, ASNA AZEEZ, INDIAN SIGN LANGUAGE RECOGNITION USING YOLOV5 , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- C P Athira, Fathima Sithara P.A, HAND GESTURE BASED HOME AUTOMATION , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
- Athira Sankar, Sajishma S R, Alan Raj, Vaishnavi A K, Reshmi S Kaimal, Hydro Sense: Empowering Water Quality Monitoring Through IoT And ML , International Journal on Emerging Research Areas: Vol. 4 No. 1 (2024): IJERA
- Kevin Roy, Lino Shaji, Riya G Johnson, Tince Tomy, Jane George, INTELLIGENT BUDDY , International Journal on Emerging Research Areas: Vol. 3 No. 1 (2023): IJERA
You may also start an advanced similarity search for this article.